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Mobile Agent Approach
to Distributed Vision
Sensor Fusion

T
he use of vision as a sensor source has
been gaining popularity because of the
vast amount of information obtain-
able from visual data. Past research
efforts have focused on the indus-

trial uses of vision systems for machine vision
[1] in large-scale industrial manufacturing with
safety systems, product inspection, inventory
control, and security monitoring. With an in-
creased interest in ubiquitous computing and
the advancement of technology, low-cost vision
systems that can be geographically distributed
for vision sensing are now readily available. These
vision systems can be easily integrated into sensor
networks or robot networks as separate mobile or
stationary units or fused into the sensor or robot nodes
for target tracking, environmental monitoring, or intru-
sion detection.

In the world of robotics, vision systems have been fruitful
in mobile robot systems. The wealth of information obtained
from integrating vision sensors can greatly enhance the ability
of a system to interact with or model the world around it.
General vision research with mobile robots focuses on machine
vision in terms of navigation [2], simultaneous localization and
mapping (SLAM), interaction [3], and modeling. With multi-
robot systems (MRSs), the vision fusion technique becomes
important, as the number of agents in a system grows because
of potential information overloading.

The integration of strategically placed vision sensors can
dramatically reduce the uncertainty of a scene. Vision sensors

can be manually placed by soldiers in a war zone or integrated
into the nodes of an MRS. Distributed vision sensors are gen-
erally afflicted with the same constraints as any self-sustaining
distributed sensor system, with power being the most scarce
and valuable resource. Communication is far more energy
expensive than computation. Therefore, continuously sending
images over the network is not very efficient. Hence, the effi-
cient use of distributed vision sensors is often one of the key
aspects to a successful mission. Also, with a myriad of vision
sensors distributed over a given region, the continuous stream-
ing of visual information to a central location would congest
the network and limit the productivity of the overall system.
In general, visual information may not be needed at all times,
and instead, the vision systems should only be accessed on
demand. This is especially true in situations where the interfacingDigital Object Identifier 10.1109/MRA.2010.937857
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system only needs to acquire visual data from specific vision sys-
tems and fuse them into usable information. To fully utilize the
vast amount of potential visual information from geographically
distributed systems, a new visual fusion technique is required that
provides on-demand access to the vision systems while reducing
the communication overhead.

Distributed vision systems have been previously studied in
different scenarios [4]. Most distributed vision systems rely on
hard-coded algorithms. When dealing with multiple vision
systems that may be geographically distributed, it is impractical
to manually update hard-coded firmware whenever a modifi-
cation to the system is required. A novel solution to distributed
vision systems is required to provide the necessary flexibility
and maintainability needed for unstructured environments.
The use of mobile agent technology in distributed scenarios
has gained popularity and can enhance the design and analysis
of problem domains that are geographically distributed, exist
in dynamic environments, and require subsystems to interact
with each other more flexibly.

Mobile agent technology has been proven to be an efficient
and effective tool for sensor networks and distributed systems
[5], [6]. Mobile agents can be dynamically created during run-
time and dispatched to remote systems to perform tasks with
the most up-to-date code. In contrast to hard-coded systems, a
mobile agent that carries the required image-processing algo-
rithm can travel between different execution environments in
a network [7]. The innate mobility property of mobile agents
along with their ability to carry the required data-processing
algorithms allows for distributed vision sensor fusion. There-
fore, the mobility of mobile agents provides large-scale distrib-
uted applications with significant flexibility and adaptability to
deal with unforeseen system perturbations.

This article presents a flexible architecture for distributed
vision fusion using mobile agent-based technology. Our previ-
ous work, verified through a simple feasibility case study involv-
ing part localization in the manufacturing domain, has shown
that the mobile agent technology is a salient solution for remote
vision sensor fusion [8]. However, the scope of the previous
work was limited. This article provides more detailed informa-
tion concerning the components of the architecture and their
implementation, a more extensive description of the manufac-
turing experiment, and a new verification experimental appa-
ratus for planetary reconnaissance.

The Architecture for Mobile Agent-Based
Distributed Vision Fusion
A geographically distributed vision fusion system may com-
prise different types of mechatronic devices and span multiple
network domains. A general architecture for distributed vision
fusion using mobile agent technology is shown in Figure 1.
The architecture demonstrates the possibility of having multi-
ple geographically distributed mechatronic systems. The main
components include mobile systems, stationary systems, and
knowledge bases. Specialized distributed vision systems may
contain all or a subset of the discussed subsystems. The commu-
nication infrastructure may include a myriad of communication
methods, and its implementation is highly application specific.

Mobile Systems
Mobile mechatronic devices encompass a vast array of devices
from mobile robot platforms and unmanned aerial vehicles to
portable personal devices such as cell phones and personal digi-
tal assistants. Each device provides a new perspective of the
environment and can be used to further enhance the virtual
perception of the system. Some of the mobile mechatronic
devices may not have an attached camera system and would
greatly benefit from collaborative information fusion with
nearby devices containing vision systems. Each mechatronic
device is assumed to utilize some type of communication device,
allowing it to communicate with nearby systems or directly inte-
grate itself into a system-wide communication network. The
mechatronic devices should also contain an embedded computer
system, running an operating system (OS) capable of supporting
a mobile agent platform.

Stationary Vision Systems
Stationary vision systems are devices deployed by personnel,
manipulator systems or mobile systems. They provide a consist-
ent viewpoint that has been localized by some desired means,
including multipoint communication signal triangulation, local
global positioning system (GPS), high-altitude visual systems,
inertial measurement unit (IMU), and differential odometry. As
with the mobile systems, stationary vision systems are assumed
to have some means of communication with other nearby sys-
tems and contain an embedded system capable of supporting a
mobile agent platform.

Knowledge Base Systems
Knowledge bases may be present in one or all of the mecha-
tronic systems or reachable by network access. The knowledge
bases may provide multiple functionalities and form the means
for the organization, collection, and retrieval of knowledge.
The type of information and ontology used for storage is appli-
cation specific. A knowledge base may be implemented with a
procedural reasoning system (PRS) [9], [10] for dynamic task
decomposition or may contain multiple visual-processing and
manipulation algorithms fetchable by mobile agents for on-
demand dynamic in situ processing of visual information. Mobile
agents can migrate to a knowledge base and acquire multiple
algorithms suited for the current task or operation of the request-
ing mechatronic device or provide new visual tasks to the
mechatronic device as prescribed by the PRS. A PRS-enabled
knowledge base or expert system may provide solutions to
encountered problems or correlate the visual tasks of the system
as a whole. New visual-processing and manipulation algorithms
or visual tasks can be uploaded to the knowledge base by users.

Communication
The communication infrastructure of the system is highly
application specific. It is assumed that all mechatronic systems
contain some type of communication device, allowing for the
sharing of mobile agents. The simplest network solution is to
have a system-wide area network, allowing all managed devi-
ces to communicate with each other via the same protocol.
The network may be managed by a single-server system or
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router, as in normal office network deployments, use an ad hoc
network infrastructure, or both.

Not all devices need to be connected to the same network.
Some distributed systems may detract from or be strategically
deployed out of communication range of the main network.
A mobile robot may be instructed to survey an area out of
communication range to deploy stationary vision systems. Also,
some devices may use different forms of communication meth-
ods. Stationary systems may use radio-based communication,
where the mobile systems may contain both radio and standard
wireless devices, thereby allowing them to interact with both
the stationary systems and overall network.

Implementation
The following sections describe in detail the implementation
of the architectural components, including the mobile agent
systems, vision systems, and knowledge bases mentioned in the
previous section.

Mobile Agent Systems
Among all of the mobile agent systems that have been developed
over the past decade, JADE [11] is a notable representative with
regard to active maintenance and research use. It is IEEE

Foundation for Intelligent Physical Agents (FIPA) standard
compliant [14]. However, developed in Java with a very large
footprint, JADE has been focused toward IT and would re-
quire developing specialized modules for integrating with
low-level hardware. To facilitate the implementation of the
mobile agent-based distributed vision fusion architecture, a
mobile agent platform geared toward interfacing with low-level
mechatronic hardware is needed. Therefore, the mobile agencies
discussed in the architecture are implemented using Mobile-C
[12], [13]. Mobile-C is an IEEE FIPA standard compliant multi-
agent platform for supporting C/Cþþ mobile agents in net-
worked intelligent mechatronic and embedded systems. It was
originally developed as a stand-alone mobile agent system. To
provide distributed applications with significant code mobility,
a Mobile-C library [15] was developed, which allows Mobile-
C to be embedded into applications to support C/Cþþmobile
agents. The Mobile-C library is an implementation of the IEEE
FIPA standard-compliant mobile agent system using Ch, an
embeddable C/Cþþ interpreter, as its agent execution engine
[16], [17]. Mobile-C agents containing mobile C/Cþþ code
are structured in XML for portability and flexibility [18]. The
Mobile-C library facilitates code mobility in C/Cþþ pro-
grams and the development of multiagent systems that can
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Figure 1. The architecture for mobile agent-based distributed vision fusion.
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easily interface with a variety of hardware devices. The library
is designed to allow software agents written in C/Cþþ to access
low-level hardware as well as to provide a degree of mobility
across heterogeneous computer systems. C/Cþþ was chosen as
the library and agent language because of its wide availability,
portability, and flexibility.

Mobile-C also provides an interface between agent and
binary space. Using the provided application programming
interface (API) functions, agent space scripts are able to access
data, synchronize, and communicate with code running in
binary space, and vice versa. Agents are also able to communi-
cate and synchronize with each other to perform complex tasks
that require interagent coordination. The comparative study
between Mobile-C and JADE indicates that the agent migra-
tion in Mobile-C is approximately 50% faster than that in JADE
[15]. The study also indicates that both Mobile-C and JADE are
scalable with respect to the number of migrating agents.

Vision Systems
The vision systems discussed in the architecture comprise a
camera and an embedded microcomputer system used to inter-
face with the camera hardware and apply either image or video
processing to the camera data stream. The embedded hardware
runs an embedded OS with a Mobile-C agency on top of it,
allowing for the migration of agents into the vision system.
Therefore, systems requiring video or image access can send an
agent to the vision system and acquire the desired vision data.
This method provides the most flexibility, since the incoming
agent can apply its own specific image- or video-processing algo-
rithms to the data stream instead of only using what is available
on the distributed vision system. Safeguards may be implemented
to protect the vision system from mobile agent saturation. One
method is to limit resource allocation to a certain number of
agents, either using mutual exclusions or queuing the agents.
Another method is to use FIPA communication agreements,
where the systems must first request the use of a resource.
Once permission has been granted, the requesting system can
then send an agent containing the desired vision-processing
algorithm to the system providing the vision resource. Mobile-
C provides many methods for implementing resource restric-
tion, including condition and mutual exclusion variables, FIPA
communication, or queuing agents.

Image Processing and Manipulation
To facilitate the acquisition of video or image data, vision sys-
tems utilize OpenCV [19] to provide incoming agents with
onboard sophisticated vision algorithms and ImageMagick [20]
to provide simple image manipulation and processing. OpenCV
contains an optimized collection of C libraries spanning a wide
range of computer vision algorithms. These algorithms include
motion segmentation and pose recognition [21], multiprojector
display system [22], object and face recognition, and three-
dimensional (3-D) reconstruction. ImageMagick is a widely
used set of image manipulation utilities that provide a robust
collection of tools and libraries for writing, reading, and manip-
ulating images. Use of these visual processing and manipulation
libraries by the agents are facilitated by the inclusion of the Ch

OpenCV package [23] and the Ch ImageMagick package [24].
The Ch OpenCV and Ch ImageMagick packages are Ch bind-
ings to the OpenCV and ImageMagick C libraries, respectively.
With the Ch OpenCV and Ch ImageMagick packages, all C
(or Cþþ) programs using function from the OpenCV and
ImageMagick C libraries can readily run in Ch interpretively
without compilation.

Knowledge Base
The knowledge base is stored in a database and implemented
using either open database connectivity (ODBC) or Structured
Query Language (SQL). Access to the knowledge base by mobile
agents is facilitated through the use of Ch ODBC [25] or Ch
SQLite [26] packages, which are the Ch bindings to the ODBC
and SQLite C libraries, respectively. Upon arriving at the knowl-
edge base, mobile agents may query or modify the database
through available Mobile-C services or provide their own mecha-
nism for accessing the database.

Experimental Case Study
The following sections describe the two experimental case
studies in which distributed vision systems benefit from the
integration of mobile agents for vision fusion. The first exam-
ple focuses on the concept of part localization in an automated
manufacturing workcell while the second focuses on tier-scalable
planetary reconnaissance with vision sensor fusion between mul-
tiple camera views. The complete software, including the mobile
agency, Mobile-C, the mobile agents in XML, and the mobile
code in C used in the following experiments, is available from
the Web site for the project [13], [27].

Automated Vision System for Manufacturing
The lack of reprogrammability is a pinnacle drawback to industrial
machine vision systems. System designers trying to reduce vision
system complexity while under tight operating and budgetary
conditions have to choose between creating a generalized vision
system that requires a significant amount of reprogramming to get
it to perform practical vision tasks or a turnkey vision system that
provides a total solution to a single given industrial vision task [28].
Future developments are focused on maintaining automated
flexible manufacturing, where flexibility is enhanced by injecting
programmability directly into the automation process to ensure
vision-assisted automation cost savings [29]. To further cut costs,
vision control systems have recently moved to using affordable
commercial off-the-shelf vision components because of their
good performance-to-low cost ratio [30]. The mobile agent archi-
tecture for distributed vision fusion presented in the “The Archi-
tecture for Mobile Agent-Based Distributed Vision Fusion”
section is a flexible architecture well suited to maintain manufac-
turing flexibility. The architecture is capable of integrating new

In the world of robotics,
vision systems have been fruitful

in mobile robot systems.
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off-the-shelf vision technology while providing in-process vision
reprogrammability of potentially distributed vision systems.
Mobile agents carrying new on-demand vision programming
can be sent to any required distributed vision system for in situ
image acquisition, analysis, and object recognition.

An experimental robotic workcell, shown in Figure 2, was
used to verify the feasibility of the mobile agent-based vision
fusion architecture. The assembly workcell was developed at the
Integration Engineering Laboratory at the University of Califor-
nia (UC) Davis and comprises of a Puma 560 and an IBM 7575
robotic manipulator and a conveyor system [31], [32]. The ro-
botic systems were retrofitted to comply with open-architecture
requirements using two Delta Tau Data System’s Turbo
PMAC2 peripheral component interconnect (PCI) controllers
[33]. Control of the assembly system using Ch and mobile agents
has been previously verified [34]. In this experiment, the robotic
manipulators’ base frame would move relative to the world
frame under the robot’s motion, since they are not bolted to
the ground. Therefore, the robots would have to be recali-
brated after each run in order for the robots to securely acquire
the part. The parts themselves are not always placed in the same

initial configuration. To deal with uncertainties in part configura-
tion and disturbances to the robots’ reference frame, a vision sen-
sor was integrated into the robotic workcell. The vision sensor
provides the system with the ability to accurately identify and
locate objects even if the objects were moved since the last cali-
bration. Control of the robot manipulators and vision fusion
process is accomplished through the use of mobile agents. The
following sections describe the manufacturing experiment
used to validate mobile agent-based vision fusion.

Experimental Framework
A National Television System Committee (NTSC) Watec
LCL902K camera was in tegrated into the automation workcell
and mounted to the IBM 7575 robot, as shown in Figure 3. A
custom-machined mount was used to position the camera to
have the end effector be centered in the field of view while the
robot was in ready position. The camera was directly mounted
to the robot as opposed to somewhere in the world frame to
avoid unnecessary camera frame-to-robot frame calibration and
transformation steps. The camera was mounted approximately
2 ft from the end effector because of a low pixel resolution of
640 3 480. The simulated part of the assembly automation work-
cell was manufactured to be easily recognized by the camera. The
part, shown in Figure 4, was machined out of aluminum for the
base and shaft and delrin for the top. This provides a good weight
distribution for part stability during conveyor transport. The
entire part was coated with five layers of a spray-on rubber com-
pound to assist gripping. The rubber was removed from the top
to provide a naked delrin square for visual part identification.

The hardware architecture for the case study is shown in
Figure 5. The automation workcell and the vision system each
have their own computer system. The computer systems of
the automation workcell and the vision system run a Mobile-
C agency that is ready to receive mobile agents.

Figure 2. An automated robotic workcell.

Figure 3. The IBM 7575 with a mounted camera. Figure 4. A simulated assembly part situated in a conveyor carrier.

IEEE Robotics & Automation Magazine70 SEPTEMBER 2010



Vision-Assisted
Automation Experiment
An automation agent containing the de-
sired control functions that make up the
first automation task is sent to the auto-
mation workcell from Machine 1 to
Machine 2. Once the agent has been re-
ceived, it begins its execution on the auto-
mation workcell computer. The mobile
agent code simulates the operations of
an automation assembly. When the auto-
mation workcell is started, the two robots
and the conveyor system are moved to
their ready positions after initialization
and calibration. Then, the IBM 7575 ro-
bot is used to place the camera over the
area where the parts to be picked up are
expected to be. The automation agent
running on Machine 2 subsequently gen-
erates a new vision mobile agent con-
taining the required object-recognition
algorithm and sends it to the vision system
on Machine 3. The vision agent accesses
the camera hardware and acquires the
position of the part relative to the IBM
7575 body reference frame. The vision agent then migrates back
to the assembly workcell on Machine 3 and uses FIPA commu-
nication to relay part positions to the assembly agent. The IBM
7575 then picks up the first part from the acquired location and
moves the camera to the desired drop-off location. Once again,
a new vision agent is deployed to the vision system with a drop-
off location-recognition algorithm. After the vision agent returns,
the drop-off location is relayed back to the assembly agent and
the part is lowered into the drop-off container on the conveyor
system. Once a part has been placed, the conveyor system will
rotate. As the conveyor is rotating into its preset position, the
IBM 7575 will then move back to the next acquired pickup
location while the Puma 560 moves to pick up a part from the
conveyor. After the Puma 560 has picked up a part, it moves
to a drop-off location and positions the piece. The assembly
cycle simulates the assembly operations of a part. Once a part
has gone though its initial stages of manufacturing, it is placed
on a conveyor system and brought to either the next stage in
fabrication or packaging. The motion of the robots is synchron-
ized to ensure that a robot is fully stopped before proceeding
with the next control command.

Object Identification
Two object-recognition algorithms were used. The first object-
recognition algorithm determines the location of the part to be
moved. The second object-recognition algorithm determines
the position of the drop-off location on the conveyor system.
Object recognition is accomplished through the use of Intel’s
OpenCV library via the Ch OpenCV package [24]. The
Mobile-C agent code is capable of calling Intel’s OpenCV
API directly through the Ch OpenCV package. The result of
the object-recognition algorithm is shown in Figure 6. The

coordinates for the center of the part were (213, 112), as
measured in pixels from the upper left corner of the original
image. The agent also finds the orientation of each individual
object as well as the orientation of the group (given multiple
objects arranged in a linear formation).

Visual Calibration
The robot coordinate frame was aligned with the camera coor-
dinate frame by doing a series of vision tests. The end effector
holding the part was rotated at intervals of 10� within the field
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Figure 5. The architecture for an experimental distributed vision fusion-automated
manufacturing workcell.

Figure 6. The application of the object-recognition algorithm
to determine the orientation and position of the part.
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of view of the camera in a circular motion. At each end-effector
position, the object’s position was recorded using the object-
recognition algorithm. The absolute robot position with respect
to the robot base frame and the converted vision positions are
shown in Figure 7. Using a circular regression fit, an equation
for each of the two circles was found from the data points. The
equations were used to find a conversion factor between the
two coordinate frames.

Tier-Scalable Planetary Reconnaissance
There has been a fundamental shift in remote extraterrestrial
planetary reconnaissance from segregated tier reconnaissance
methods to an integrated multitier and multiagent hierarchical
paradigm [35]. The use of a cooperative multitier paradigm
requires a flexible architecture that not only provides a mecha-
nism for hardware access but also an agile vision fusion mecha-
nism for vertical and horizontal integration of all vision sensor
components. Multitier planetary reconnaissance systems include
an orbital satellite with optical systems capable of taking large
surface images, aerial unmanned vehicles capable of taking
topographical maps of a desired region for exploration and
robot localization, and multiple ground systems, as shown in
Figure 8. The system can also include stationary vision systems
for long-term visual exploration of a given area. It would be
inefficient to have all of the visual systems constantly streaming
visual data to all working robots, especially in a dynamic situa-
tion where a mobile robot may sporadically enter a given
vision sensor’s visual range. Instead of having each vision sys-
tem stream visual data, a mobile agent carrying the desired
visual-processing algorithm is sent to the vision system and the
algorithm is carried out in situ. The agent can migrate to all
nearby vision systems and then return to the sending host with
the required data, which reduces the overall network conges-
tion and decreases power consumption. A mobile robot can

send out an agent to an aerial vehicle and nearby station or
mobile vision systems with optimal path generation and loca-
tion algorithms.

Experimental Framework
A depiction of the experimental scenario for mobile agent-based
vision sensor fusion in tier-scalable planetary reconnaissance is
shown in Figure 8. The main experimental objective is to have a
mobile robot with specialized equipment locate and take mineral
samples of desirable rocks. However, the sensor information of
the mobile robot is limited, and the mobile robot is incapable of
locating a desirable target on its own. The mobile robot will uti-
lize the visual system of a manipulator robot exploring the same
area and the visual system of an aerial robot taking topological
images to choose and localize acceptable rocks for sampling. The
main purpose of this case study is not only on the actual algo-
rithms used to implement object detection or path planning but
also to show how mobile agents can be utilized to integrate
information obtained from distributed vision systems. The aerial
view is too coarse to detect desirable rocks but is ideal for optimal
path planning. The view from the manipulator robot, on the
other hand, provides enough resolution to deduce which rocks
would make superb targets for sampling but is too low to the
ground for optimal path planning. Ideal rock targets for sampling
can be detected using specific sensors that can detect certain radi-
oactive isotopes, optimum rock geometry, or remotely chosen
by human operators.

The laboratory setup to simulate the environment is shown
in Figure 9. The visual systems, mobile robots, and field objects
are highlighted. A K-Team Khepera III robot is used as a
mobile robot, a Puma 560 with an attached Logitech QuickCam
Pro 9000 simulates the mobile manipulator, and a Watec LCL-
902K B/W camera mounted above with a wide field-of-view
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C/Cþþwas chosen as the library
and agent language because of
its wide availability, portability,
and flexibility.
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lens is used to simulate the visual system of an aerial robot.
Small paper drinking cups are used as field objects, with one cup
colored red to signify the target.

Field Object-Detection Algorithm
The detection of the field objects is highly dependent on the
environmental conditions and the geometrical configuration
of the objects that need to be detected. In general, some aspects
of the objects are used to distinguish them from the background
along with specifying certain assumptions of the scene. The field
objects consist of only the cups. Figure 10(a) and (b) shows the
aerial and manipulator views of the field objects, respectively.
The field object-detection algorithm looks for the bright con-
trasting regions, differentiating the tops of the cups with the
rest of the environment. The algorithm runs a contour-locat-
ing algorithm to determine the locations relating to the top of
the cups. The rectangles in Figure 10(a) and (b) show the
bounded region of the located contours using the field object-
detection algorithm, with a dot representing the center of the
bounding rectangles.

Target-Detection Algorithm
Target detection can only be accomplished using the visual sys-
tem of the manipulator, because it is the only available color
camera, and the aerial view is assumed to be too high to distin-
guish desirable target characteristics. The target-detection algo
rithm determines the desirable target by taking into account that
the target is colored red and subtracting individual color channels,
as shown in Figure 11. The found target is shown in Figure 12.

Multiview Target-Fusion Algorithm
To deduce which field object in both the aerial and manipula-
tor views correlate with the target, a target-correlation algo-
rithm is used to determine which field object was the target in

the manipulator view, and a fusion algorithm is used to corre-
late the target manipulator view field object with the field
objects of the aerial view. This required the assumption of no
possible object occlusion.

Figure 9. An experimental setup.

(a)

(b)

Figure 10. Detected field objects are shown encompassed in a
black rectangular box, with a black dot depicting the center of
the rectangular region. (a) An aerial view and (b) mobile
manipulator view.

Figure 11. The summation of the two subtractions.
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The target-correlation algorithm utilizes the rectangular
regions found from the field object and target-detection algo-
rithm. It is assumed that the center of a target object’s rectangu-
lar region will lie within the left and right extents of the
correlating field object’s rectangular region and that the target
object’s rectangular region center will be below that of the
correlating field object’s center. The algorithm goes through all
of the found targets and compares each one with all of the
found field objects. The algorithm first determines whether the
target object’s rectangular region center lies within the left and
right extents of the field object’s rectangular center and whether
or not the target object is visually below the field object. The
final test determines which field object is vertically closest to the

target object by calculating their vertical distance. The field
object with the smallest vertical distance is set as the target. The
index of the field object is stored in an array for later use.

Hence, a fusion algorithm is used to correlate the manipula-
tor target field object with the field objects of the aerial view.
Fusion of the separate views is rather complex because of the
skewed nature of the manipulator view. There are multiple
methods that can be implemented to handle the skewed data.
One method is to locate the robot in both manipulator and
aerial views and use it as a pivot point while matching the object
positions. The second method requires a localization mecha-
nism, either through the use of dead reckoning, communication
channel triangulation, or from a planetary or localized GPS sys-
tem. Given the orientation, the manipulator view can be rotated
to correspond with the view of the aerial robot.

Once the images have been properly aligned, a vertical scan is
used to first sort the found field objects from the manipulator view
using their respective center pixel points. A second sort is then
applied using the horizontal position of their respective center
pixel points. The same technique is applied to the aerial view based
on the orientation of the manipulator robot. Once completed, the
sorted aerial field object array should coincide with the manipula-
tor field object array. It is then a simple task to correlate the tar-
geted object from the manipulator view with the aerial view.

Path Planning Using the Genetic Algorithm
Although any path-planning algorithm can be used, a genetic
implementation was chosen because of its innate nature of finding
multiple solutions. The genetic algorithm was implemented using
the Genetic Algorithm Utility Library (GAUL), a C-based, open-
source programming library designed to assist in the development
of the code that requires evolutionary algorithms [36]. The Ch
GAUL package [37] provides Mobile-C agents the ability to uti-
lize all of the functionality provided in the GAUL C library.

The genetic algorithm follows the same implementation as
was done in [38]. The aerial image was subdivided into zones
of 10 3 10 pixels and stored internally as a two-dimensional
array. If a field object encompassed part of a zone, that zone was
deemed blocked and noted as a one in the two-dimensional
array. Field-object locations were found via the field object-
detection algorithm discussed in the previous section, which
provided the center location and bounding rectangular region
of each object. The radius of the robot is added to the field-
object bounding rectangular region, which reduces the com-
plexity of the path-planning problem by allowing a singularity
approximation of the mobile robot.

Each chromosome contains 2(n þ m) ¼ 2(64 þ 48) ¼ 224
genes, as suggested in [38], given that the 640 3 480 pixelized
image was broken into 64 3 48 zones. The genes contain 3 bits and
define the direction the mobile robot should move from its current
position. The direction encoding scheme is shown in Figure 13.

The genetic algorithm was run using a population size of
2,000 with 100 evolutionary cycles. A multipoint mutation
and allele crossover mixing were used with a crossover rate of
0.9, mutation rate of 0.02, and migration rate of 0. Population
entity selection for migration and mutation were accomplished
using the selected one best of two approaches. Crossover entity

011 010 001

000100

101 110 111

Figure 13. Direction encoding, as used in [38].

Figure 12. Finding the target along with detected field objects.

Mobile-C is an IEEE FIPA
standard compliant multiagent
platform for supporting C/Cþþ
mobile agents in networked
intelligent mechatronic and
embedded systems.
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selection was accomplished using the two best of two ap-
proaches. The genetic algorithm path-planning output is shown
in Figure 14.

Experiment
The experiment initiates with the Khepera III mobile robot
approaching the designated area of rock sampling. The Khepera
III mobile robot is running a Mobile-C agency and is under
the control of a mobile agent, with the objectives of searching
for and sampling desirable rock specimens. The mobile agent
migrates itself to the mobile manipulator robot, where it uti-
lizes the available Ch OpenCV commands and runs through
the field and target object-detection algorithms. From there, it
migrates to the overhead aerial robot with the field and object
data obtained from the mobile manipulator robot, runs the field
object-detection algorithm on the aerial view, and fuses the data
from both views to locate the target. The mobile agent then
populates a binary map of the area, where the objects are defined
as being one and the other areas as being zero. Afterward, the
mobile agent runs the genetic path-planning algorithm using the
Ch GAUL package, producing waypoints for the Khepera III
mobile robot. Finally, the mobile agent migrates back to the
Khepera III mobile robot with the waypoints for the path.

The determination of a satisfactory path was dependent on
the gene seed and the population size used. Small population
sizes were incapable of producing a path ending at the desired
target, which is mainly due to the method of seeding the popu-
lation. Generally, each chromosome of the population is first
seeded with a randomized gene selection. However, some of
the populated chromosomes did not provide an appropriate
path or a useful population entity. A better approach would be
to still utilize random gene selection but only to populate the
world with chromosomes that provide a viable path.

Discussion
The following sections discuss the differences between mobile
agent and monolithic approaches to distributed vision sensor
fusion, scalability of the described system, and challenges and
future concerns of mobile agent approaches.

Comparison Study with Monolithic Approaches
Many vision-based sensor systems are implemented using a
monolithic client–server approach that generally operates over
standard communication infrastructures. Visual data are either
provided on demand or continuously streamed to the clients
where the image processing and analysis computation are per-
formed. As such, these systems demand a high bandwidth com-
munication infrastructure, especially with high-fidelity images.
When dealing with mobile and remote systems, it is impractical
to assume that all clients contain the necessary resources and
required supplemental libraries to process large volumes of vision
data. Since vision systems are capable of capturing high-quality
images, they typically also contain the necessary resources to
process the images as well. Therefore, it would be beneficial to
have the vision system perform the required image processing
and manipulation and send the results back to the client. Algo-
rithm reconfigurability can be accomplished using monolithic

techniques by preinstalling all necessary image-processing and
manipulation algorithms onto the vision sensor and having the
client select the desired algorithm. However, it is highly imprac-
tical to assume that all the possible scenarios can be accounted
for and preinstalled on a vision system. Mobile agents provide
an innate capability to handle algorithm variability, because
they carry the necessary algorithms with them as they selec-
tively traverse over multiple hosts.

In our first experimental example, continuously sending the
visual data to all robots would congest the network, leaving no
room for necessary real-time interrobot communication that
would eventually lead to robot collision. Mobile agents are used
to perform in situ image processing and manipulation at the
vision source and return back to the client with the processed
data. The algorithm provided in the mobile agent code is also
modified based on the current state of the robotic system, dem-
onstrating the adaptability of the mobile agent approach to sys-
tem variability. System adaptability may also be implemented in
the monolithic systems by using the semidynamic approach of
scripting the sharing of binary files over the network. However,
this process is rather cumbersome, especially when dealing with
heterogeneous systems with different compilation and linking
needs. Also, it has been reported that mobile agents provide a
faster adaptability response time in comparison with semidy-
namic monolithic implementations [5], [39].

In our second experimental example, the mobile robots
operate on embedded systems under resource constraints and
relatively slow processing capabilities. Mobile systems are gen-
erally constantly moving relative to vision sensors and experi-
ence more communication noise than static systems. Having
the vision data to be continuously streamed to the mobile
robot may have adverse affects on the robot’s ability to safely
navigate complex terrain and reduce image-processing func-
tionality because of sporadic loss of video information, jeop-
ardizing the mission. Also, the higher tier-level systems are

Figure 14. Finding a path using the genetic algorithm.

Mobile agent technology has been
proven to be an efficient and

effective tool for sensor networks
and distributed systems.
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more computationally rich and provide a better environment
for executing image-processing and path-planning algorithms.
Mobile agents provide an invariant execution of code over
disparate hosts and can independently handle necessary sensor
fusion requirements by migrating with previously processed
sensor data. Mobile agents can also independently migrate to
more resource-rich systems for faster execution to improve over-
all system response and efficiency. Therefore, the use of mobile
agents is highly advantageous in applications dealing with dy-
namic, geographically unstructured environments.

Scalability
The scalability of a mobile agent-based system is dependent on
the application and is due to resource limitations in the system.
In our experimental examples, scalability issues may arise when
too many mobile agents are sent to a remote sensor system with
limited resources. One method of handling mobile agent over-
loading is to limit the number of mobile agents allowed to
access a given resource on the desired remote system. Another
method is to restrict the number of the mobile agent migration
messages from external sources or cap the number actively run-
ning mobile agents on the system. All of the discussed methods
for handling scalability concerns can be easily implemented within
the mobile agency by using standard resource access restriction
methods such as semaphores or mutexes or by simply using a
counter. The comparative study between Mobile-C and JADE
indicates their ability to handle more than 100 and potentially
more mobile agents on a given system [15].

Selecting an Appropriate Mobile Agent System
One major concern when either enhancing the current imple-
mentation or designing a new vision system with mobile agents
is the selection of an appropriate mobile agent system. Naturally,
applications developed in C/Cþþ can be easily integrated with
a C/Cþþ-based mobile agent system like Mobile-C. Using the
same language for application and mobile agent code greatly
enhances the interoperability of functions and variables in both
binary and agent spaces. Mobile agent code can seamlessly call
functions and access variables in binary space and vice versa.
Applications developed in Java might use a Java-based mobile
agent system such as JADE. However, designers should also con-
sider the implementation language of the low-level device driv-
ers for the desired vision sensors that are typically written in C.

Challenges and Future Concerns
Some challenges and future concerns relating to mobile agent-
based distributed vision sensor fusion are listed as follows:

u design optimized adaptation methods for collaborative
vision processing, especially in dynamic network topol-
ogies due to node mobility

u study the effects of the mobile agent approach on real-
time deterministic vision sensor fusion applications

u fault-tolerance mechanisms should be considered in case a
mobile agent is lost in transit or a vision system goes down.

Conclusions
This article presented a mobile agent-based distributed vision
fusion architecture that provides a flexible vision fusion solution to
increase power efficiency by reducing excessive communication
and enhance sensor fusion capabilities with migratory in situ on-
demand algorithms for vision data processing and analysis. The
IEEE FIPA standard-compliant mobile agent system, Mobile-C,
implemented as a C library, is used as the foundation for the
mobile agent-based distributed vision fusion architecture. Mobile
agents dynamically migrate from one sensor node to another to
fully combine all necessary sensor data in a desired manner specific
to the system requesting the data. Dispatching mobile agents to
target vision systems on the network is done on demand, reducing
network congestion and the required communication bandwidth.
The use of mobile agents in a distributed vision system allows for
the encapsulation of specific fusion techniques. The differences
between monolithic and mobile agent-based approaches along
with future considerations were discussed. The validity of the
architecture was proven through two separate case studies. The
first case study involves the localization of a part in a real experi-
mental setup with a retrofitted robotic workcell composed of a
Puma 560, IBM 7575, conveyor system, and vision system. The
second case study vertically and horizontally integrates multiple
systems as a tier-scalable planetary reconnaissance experimental
system involving two vision systems: a Puma 560 manipulator
and a K-Team Khepera III mobile robot. All source code includ-
ing Mobile-C, the mobile agents, and the mobile agent code
presented in the article are available at the project Web site [27].
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