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SUMMARY

The mobile agent-based computational steering (MACS) for distributed applications is presented in this
article. In the MACS, a mobile agent platform, Mobile-C, is embedded in a program through the Mobile-C
library to support C/C++ mobile agent code. Runtime replaceable algorithms of a program are represented
as agent services in C/C++ source code and can be replaced with new ones through mobile agents. In
the MACS, a mobile agent created and deployed by a user from the steering host migrates to computing
hosts successively to replace algorithms of running programs that constitute a distributed application
without the need of stopping the execution and recompiling the programs. The methodology of dynamic
algorithm alteration in the MACS is described in detail with an example of matrix operation. The Mobile-
C library enables the integration of Mobile-C into any C/C++ programs to carry out computational
steering through mobile agents. The source code level execution of mobile agent code facilitates handling
issues such as portability and secure execution of mobile agent code. In the MACS, the network load
between the steering and computing hosts can be reduced, and the successive operations of a mobile
agent on multiple computing hosts are not affected whether the steering host stays online or not. The
employment of the middle-level language C/C++ enables the MACS to accommodate the diversity of
scientific and engineering fields to allow for runtime interaction and steering of distributed applications
to match the dynamic requirements imposed by the user or the execution environment. An experiment
is used to validate the feasibility of the MACS in real-world mobile robot applications. The experiment
replaces a mobile robot’s behavioral algorithm with a mobile agent at runtime. Copyright © 2009 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A distributed application is typically composed of distinct software computing components running
on different computers connected through a network. Dependencies and relationships do not neces-
sarily exist among the components. Each component is a program that implements different algo-
rithms. Typically, any changes in any algorithm of a component requires at least interrupting,
recompiling, and restarting the specific component. It may even need to stop and recompile the
whole application to make a valid change in an algorithm of a component.
Computational steering is a powerful and widely applicable concept that allows users to control a

computational process during its execution. Computational steering can be employed for three main
uses—model exploration, algorithm experimentation, and performance optimization [1] in scientific
and engineering applications. For algorithm experimentation, computational steering enables users
to replace algorithms of a program, e.g. to experiment with newly prototyped numerical methods,
while the program is running. Therefore, certain sections of the program can be replaced at runtime,
i.e. algorithm experimentation corresponds to program code replacement.
In this article, the target application is a distributed application consisting of multiple programs

running on different computers. Therefore, an algorithm experimentation regarding such an appli-
cation involves code mobility. In the simplest case, a piece of program code is transferred from the
steering host to a specific computing host to replace another piece of program code at runtime. There
are three main design paradigms exploiting code mobility: code on demand, remote evaluation, and
mobile agent [2]. Code on demand represents the situation where a computing host downloads the
necessary program code. This is not applicable to computational steering where the steering host
plays the proactive role. Remote evaluation and mobile agent are two paradigms that match the
idea of computational steering in the sense that program code is sent out from the steering host to a
specific computing host. One difference between mobile agent and remote evaluation paradigms is
that mobile agent paradigm has the option to allow for migrating the execution state of mobile agent
code. Another difference between these two paradigms lies within the degree of code mobility,
which is essential to steering multiple components of a distributed application.
Remote evaluation paradigm allows for single-hop code mobility, whereas mobile agent paradigm

allows for multiple-hop code mobility. In remote evaluation paradigm, a piece of code is sent out
from the steering host to a single computing host where the piece of code is executed. In mobile
agent paradigm, a mobile agent can contain multiple pieces of code for multiple computing hosts.
Such a mobile agent can move from the steering host to computing hosts one after another for
code execution. An advantage of using mobile agent paradigm over remote evaluation paradigm to
perform code replacement for distributed applications is that it reduces the network load between
the steering and computing hosts. Another advantage is that once such a multiple-hop mobile agent
has been sent out, the steering host can be disconnected from the network if desired, e.g. to minimize
the energy consumption of the steering host for some application scenarios.
The majority of mobile agent platforms in use are Java-oriented. Several mobile agent platforms

supporting Java mobile agent code include Mole [3], Aglets [4], Concordia [5], JADE [6], and
D’Agents [7]. Adopting a standard language as the mobile agent code language that provides both
high-level and low-level functionalities is a good choice to deal with the diversity of distributed
applications. C/C++ is a proper choice for such a mobile agent code language. C/C++ provides
powerful functions in terms of memory access. A huge number of existing C/C++ programs can be
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used as mobile agent code. Moreover, C is an internationally standardized language, and can easily
interface with a variety of low-level hardware devices, which is especially useful for mechatronic
and embedded systems. Ara [8,9] and TACOMA [10] are two mobile agent platforms supporting
C mobile agent code, whereas Ara also supports C++ one. Mobile agent code is compiled as byte
code [11] and machine code [12] for execution in Ara and TACOMA, respectively.
Mobile-C [13–16] was originally developed as a stand-alone mobile agent platform to support

C/C++ mobile agent code. In contrast to the approach of running compiled C/C++ mobile
agent code adopted by Ara and TACOMA, Mobile-C chose an embeddable C/C++ interpreter—
Ch [17–19] to run C/C++ mobile agent source code. The interpretive approach can avoid some
potential problems, such as platform portability, secure execution, and system implementation issues
that could be induced by the compiling approach. In our previous work, we developed the Mobile-C
library [20] to enable the integration of Mobile-C into any C/C++ programs that attempt to exploit
and benefit from the mobile agent technology. A mobile agent of Mobile-C is represented in XML.
The term, mobile agent code (also called mobile code or agent code) in this article refers to the
C/C++ source code inside a mobile agent of Mobile-C.
In this article, the mobile agent-based computational steering (MACS) for distributed applications

is presented. In the MACS, a mobile agent sent out from the steering host migrates to computing
hosts successively to replace algorithms of running programs that constitute a distributed applica-
tion. The network load between the steering and computing hosts can be reduced, and the successive
operations of a mobile agent on multiple computing hosts are not affected whether the steering
host stays online or not. In the MACS, programs running on the steering and computing hosts are
C/C++ programs and have an embedded mobile agent platform, Mobile-C, to handle the oper-
ations regarding mobile agents. Runtime replaceable algorithms are represented as agent services
in C/C++ source code and can be replaced with new ones through mobile agents. The source
code level execution of mobile agent code facilitates handling issues such as portability and secure
execution of mobile agent code. The Mobile-C library enables the integration of Mobile-C into any
C/C++ program to carry out computational steering through mobile agents. The employment of
the middle-level language C/C++ allows the MACS to accommodate the variety of distributed
applications.
The rest of the article is organized as follows. Section 2 presents some related work in computa-

tional steering, dynamic software reconfiguration for mobile robots and sensor networks, and mobile
agent-based applications. Section 3 presents the Mobile-C library adopted in the MACS to embed
a mobile agent platform in a program to support C/C++ mobile agent code. Section 4 describes
the MACS framework. Section 5 describes the methodology of dynamic algorithm alteration in the
MACS. Section 6 presents an experiment used to validate the feasibility of the MACS in real-world
mobile robot applications. The experiment is to replace a mobile robot’s behavioral algorithm with
a mobile agent at runtime. Section 7 gives the conclusions for the investigation we have done.

2. RELATED WORK

Several computational steering-oriented libraries, such as CUMULVS [21], RealityGrid [22,23],
POSSE [24], and gViz [25], allow users to adjust parameters of an application algorithm at
runtime. As opposed to computational steering libraries, Wenisch et al. [26] developed an integrated
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development environment (IDE) called Computational Steering Environment (CSE) for computa-
tional fluid dynamics (CFD) applications. CSE provides support for interactively adding, removing,
and modifying fluid obstacles and boundary conditions for indoor thermal comfort application and
assessment. Shenfield et al. [27] proposed an IDE that allows users to alter parameters on-the-fly
to influence the quality of solutions produced by a multi-objective evolutionary algorithm for engi-
neering design. These computational steering-oriented libraries and IDEs, however, do not support
the functionality to replace an algorithm at runtime.
VASE [28,29] and SCIRun [30,31] are two computational steering-oriented IDEs that support

algorithm experimentation [1]. A VASE application is based on a control-flow graph structure
consisting of logical blocks and control-flow arcs. Breakpoint scripts can be set between logical
blocks and contain algorithms for tasks such as the visualization of intermediate results or the
calculation of steerable parameters. A user can modify breakpoint scripts at runtime. A SCIRun
application is based on a data-flow structure comprising a network of modules. A user can inter-
change existing modules containing different algorithms at runtime. However, new modules cannot
be added at runtime. Because VASE and SCIRun are IDEs instead of libraries, they were intended
for developing new applications using their built-in software tools and components as well as
running the created applications. Therefore, it will take a significant effort to integrate the algo-
rithm experimentation functionality of VASE or SCIRun into the existing programs. In addition,
the network connection should exist between the steering and computing hosts during the entire
application execution.
Cragg et al. [32,33] used mobile agent paradigm for multi-robot architecture development to

benefit from mobile agents in several aspects among which is dynamic software reconfiguration
for networked mobile robots. MacDonald and coworkers [34,35] and Lee and coworkers [36,37]
adopted the Common Object Request Broker Architecture (CORBA)-distributed object framework
for dynamic reconfiguration of mobile robot software. In those CORBA frameworks, a user manip-
ulates the software configuration of a mobile robot by switching between available software objects
that are physically hosted on some object servers through CORBA mechanisms. Therefore, the
main difference between the above CORBA and mobile agent-based approaches is the constant
connection between mobile robots and software servers in the above CORBA-based approach. In
addition, the main difference between Cragg et al.’s and our approaches is that we chose C/C++
as the mobile agent code language whereas they chose Java.
Global code update and mobile code principles have been used for software reconfiguration

on sensor networks. Global code update principle is supported in [38–40], whereas mobile code
principle is supported in [41–43]. The advantage of mobile code approach is clear with respect to
the bytes transferred in the network and the energy consumed as the network scales for the object
tracking application scenario [44]. Although our system is not specifically aimed at extremely
resource-constrained sensor networks, it is applicable to embedded systems such as tiny computers
or single-board computers, among which Gumstix [45] is an example. Our system provides a higher
generality and broader functionality to support mobile code-based software reconfiguration for a
wide range of distributed embedded systems.
Different from this article’s emphasis on user-driven dynamic replacement of algorithms continu-

ally invoked in programs running on multiple computers, mobile agent technology has been utilized
in a variety of different distributed applications. For example, mobile agents have been used as
the load balancing scheme for a digital library [46,47]. An architecture Mobile Agent-based GriD
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Architecture (MAGDA) was designed to support the programming and execution of mobile agent-
based applications for Grid systems [48]. Other mobile agent-based distributed applications may
also be found in manufacturing [49], electronic commerce [50], network management [51], trans-
portation systems [52], and information management [53].

3. MOBILE-C LIBRARY

Due to C/C++’s universality, portability, and flexibility, C/C++ is widely used in many appli-
cations in scientific and engineering fields. Therefore, C/C++ was chosen to be the mobile agent
code language for Mobile-C [13–16]. An embeddable C/C++ interpreter, Ch [17–19], is incor-
porated as the Agent Execution Engine (AEE) to support the execution of C/C++ mobile agent
code in Mobile-C. Ch is a cross-platform computing environment that supports standard and other
commonly used C libraries. A C program can typically run interpretively in different platforms in
Ch without any modification and compilation.
Mobile-C was originally developed as a stand-alone, IEEE FIPA [54] compliant mobile agent

platform to accommodate applications where low-level hardware gets involved, such as networked
mechatronic and embedded systems. TheMobile-C library [20]was thereafter developed to facilitate
the design of mobile agent-based applications. This library allows Mobile-C to be embedded in a
program to support C/C++ mobile agent code. A C/C++ program with an embedded Mobile-C
is compiled into machine code, whereas mobile agent code is C/C++ source code. Therefore
we define the binary space is where a compiled program exists and the mobile agent space or
agent space is where mobile agent code exists. The Mobile-C library provides functions that can be
organized into eight categories: Agency, AgentManagement System (AMS), Agent Communication
Channel (ACC), Directory Facilitator (DF), AEE, Agent, Synchronization, andMiscellaneous APIs,
as shown in Figure 1. Most of these functions have two versions, one for the binary space and
the other for the mobile agent space. The binary space functions can be called in a program to
manipulate the operations associated with the embedded Mobile-C. On the other hand, the mobile
agent space functions can be called in mobile agent code to perform the same operations as those
done by their binary space counterparts.

Figure 1. Architecture of the Mobile-C library.
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The Embedded Ch toolkit [55], associated with the AEE of Mobile-C, was designed to allow
a binary C/C++ program to interface with Ch scripts at runtime for operations such as calling
functions and accessing global arrays/variables defined in the Ch scripts. Several Mobile-C binary
space functions were therefore developed on top of the Embedded Ch toolkit in order to call
functions and access global arrays/variables defined in the mobile agent space from the binary
space. Besides those Mobile-C binary space functions, all the Embedded Ch functions can be
directly called from the binary space to interface with the mobile agent space.
In Mobile-C, a mobile agent is associated with an AEE, and each AEE is independent of each

other. Functions and global arrays/variables associated with a mobile agent are therefore indepen-
dent of those associated with other mobile agents. The Mobile-C binary space functions mentioned
in the previous paragraph have their counterparts in the mobile agent space. Those mobile agent
space functions, on the other hand, allow a mobile agent code to call functions and access global
arrays/variables defined in another mobile agent code.
To coordinate simultaneous processes to complete a task in order to get correct runtime order and

avoid unexpected race conditions, a set of synchronization mechanisms can be invoked from the
binary or mobile agent space through a set of Mobile-C functions for different types of synchro-
nization.

4. MACS FRAMEWORK

In order to utilize mobile agents to replace program algorithms, a program needs to possess the
functionality to receive mobile agents and run their mobile agent code. The mobile agent code in
this article is a C/C++ program consisting of the optional function main() with or without runtime
replaceable algorithms implemented as additional functions and/or global arrays/variables. The
function main() of the mobile agent code can specify the operations, for example, the algorithm
alteration procedure, that will be performed by the mobile agent.
In the MACS framework shown in Figure 2, a distributed application consists of multiple user

programs, each of which is running on a computing host. With the Mobile-C library, each user
program can encompass a Mobile-C agency to support multiple mobile agents. Besides a Mobile-C
agency, a user program may consist of functions and data in the binary space. A steering host
contains a Mobile-C-enabled program used to monitor and control a distributed application through
mobile agents. Data structures associated with each module of a Mobile-C agency can be accessed
through the Mobile-C functions from within the binary and mobile agent spaces.
From a binary program’s perspective, it can call functions and access data in any mobile agent

code through the Mobile-C and Embedded Ch functions, as mentioned in Section 3. The data refer
to the global arrays/variables defined in the mobile agent code. On the other hand, from a mobile
agent’s perspective, it can, from within its agent code, call functions and access data associated
with other mobile agents in the same agency through the Mobile-C functions, as mentioned in
Section 3. In addition, if desired, the binary space functions and data in a user program can be
managed so that they can be called and accessed from within the mobile agent space via the Ch
Software Development Kit (Ch SDK) [56]. The Ch SDK, associated with the AEE of Mobile-C,
was designed to allow Ch scripts to access global variables or call functions in a compiled C/C++
library such as a static library, shared library, or dynamically linked library.
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Figure 2. MACS framework.

Regarding a user’s controllability perspective, for example, a user from the steering host can
generate a mobile agent, MA 2, and send it on the fly to control a particular mobile agent, MA 1,
that runs on a specific agency, Agency 1. The control activities performed on MA 1 by MA 2 may
include calling the agent space functions ofMA 1, terminating the execution ofMA 1’s agent code,
removingMA 1 from Agency 1, replacing the agent space functions of MA 1 with those carried by
MA 2. A user, responsible for allocating the rights for those activities, can specify those activities
in the function main() of MA 2’s agent code through necessary Mobile-C agent space functions.
When MA 2 arrives at Agency 1, its agent code will be executed by a newly launched AEE to
perform the desired control activities.
In the MACS, a mobile agent code can typically be executed by an AEEwithout any modification,

because the AEE-Ch supports standard and other commonly used C functions. However, if a mobile
code in a mobile agent uses a special library, this library needs to be installed beforehand, so that
functions in the library can be invoked locally in target machines. For instance, if a mobile agent
code contains functions of the Open Source Computer Vision (OpenCV) C library, the Ch OpenCV
package created using the Ch SDK needs to be installed on the machine where the agent code will
be executed.
In the MACS, when a mobile agent is received by an agency, the agent code carried by this

mobile agent will be pulled out and saved as a temporary file, which will be run by an AEE.
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This temporary file will be removed once it has been run by an AEE. Thus, as long as the user’s
computer has sufficient hard drive capacity to accommodate a temporary file for an agent code,
there is no limit imposed on the size of a mobile agent code. A mobile agent in the MACS can also
travel across multiple agencies that reside on different machines to perform the same or different
tasks.
Among the Mobile-C modules shown in Figure 2, the AMS, ACC, DF will be initialized when

Mobile-C agency is started in a user program via a Mobile-C function that starts Mobile-C agency.
These modules can therefore be viewed as being hardwired into a program when Mobile-C agency
is started. The AMS is related to the creation, registration, execution, migration, persistence, and
termination of a mobile agent. The ACC in the article is related to the inter-agency mobile agent
transport. The DF is related to yellow page activities. An AEE is automatically created to support
the agent code execution for an arrived mobile agent. In this article, it is assumed that mobile agents
are authorized agents that will not harm the security of an agency. Thus, the ASM is not required
to be initialized in a user program. By default, the ASM is not initialized when a Mobile-C agency
is started unless specified otherwise.

5. DYNAMIC ALGORITHM ALTERATION METHODOLOGY

A program typically consists of multiple functions, and each function performs a specific compu-
tational task based on an algorithm. The dynamic algorithm alteration allows a user to change the
underlying implementation of functions while a program is in progress. With the Mobile-C library,
each function in a program can be defined in a mobile agent code and registered as a service with
the DF. Therefore, an algorithm can be altered by replacing an existing service with a new service
that implements a new algorithm through mobile agents. In this article, a service refers to a function
that is defined in the agent code of a mobile agent and has been or will be registered with the DF
of Mobile-C agency by that mobile agent.
Through an example, this section demonstrates how to dynamically change an algorithm in a

running application through the Mobile-C library. Such dynamic algorithm alteration cannot be
accomplished using other notable computational steering libraries [21,22,24,25]. In this example,
there are two mobile agents sent from a client program to the server program. These two mobile
agents have the same mobile agent code except for the difference in the function to be regis-
tered as a service with the DF. The programs for this example can be downloaded from the
Internet [57].
From the flowchart shown in Figure 3, the server program repeatedly searches for a service and

calls a mobile agent space function that represents the service. A Mobile-C agency is initialized to
receive mobile agents and execute mobile agent codes to update the service. An authorized mobile
agent is represented in the form of a mobile agent structure inside an agency, as shown in Figure 4.
A mobile agent structure contains a pointer to the mobile code, a handle for the AEE, and other
information such as the name, ID, and status of a mobile agent. The agent managing thread starts
an agent executing thread for each mobile agent to initialize the AEE, which in turn runs the mobile
agent code. Once the execution of the mobile agent code is completed, the agent executing thread
updates the agent status according to which the agent managing thread can process the mobile
agent subsequently. If a mobile agent is specified to be persistent, it is not removed from an agency
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Figure 3. Flowchart of the server program.

Figure 4. Agent managing thread in Mobile-C starts an agent executing thread to execute a mobile code.

once its mobile code has been executed, so that all the functions and data in its mobile code can be
accessed from both the binary and mobile agent spaces. Here the data are global arrays/variables
that are defined to contain results of interest from the execution of the mobile agent code.
The server program shown in Program 1 performs matrix computation for two matrices and

prints the resultant matrix to the screen. A Mobile-C agency is initialized to listen on port 5130

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



Y.-C. CHOU, D. KO AND H. H. CHENG

#include <stdio.h>
#include <unistd.h>
#include <libmc.h>

int main() {
int i, j, local_port = 5130, mutex_id = 55, *agentID, numResult;
char *funcname = "matrix_operate", **agentName, **serviceName;
double a[2][2], b[2][2], c[2][2];
MCAgency_t agency;
MCAgent_t agent;

for(i=0; i<2; i++) {
for(j=0; j<2; j++) {
a[i][j] = 2*i+j+1;
b[i][j] = 2*i+j+5;

}
}
agency = MC_Initialize(local_port, NULL);
MC_SyncInit(agency, mutex_id);
while(1) {
MC_MutexLock(agency, mutex_id);
MC_SearchForService(agency, funcname, &agentName, &serviceName, &agentID, &numResult);
while(numResult == 0) {
/* If no agent is found to have provided the desired service, unlock the Mutex variable
to allow an agent to register the desired service with the DF before locking the same
Mutex variable again for the next search of the desired service. */

MC_MutexUnlock(agency, mutex_id);
MC_MutexLock(agency, mutex_id);

MC_SearchForService(agency,funcname, &agentName, &serviceName, &agentID, &numResult);
}
agent = MC_FindAgentByID(agency, agentID[0]);
MC_CallAgentFunc(agent, funcname, &c[0][0], 2, a, b);
MC_MutexUnlock(agency, mutex_id);
MC_DestroyServiceSearchResult(agentName, serviceName, agentID, numResult);

/* Output array c containing the matrix computation result to the screen. */
printf("\n");
for(i=0; i<2; i++) {
for(j=0; j<2; j++) {
printf("%8.2f", c[i][j]);

}
printf("\n");

}
/* Wait for 1 second to make the screen output of array c for each iteration clearly
readable. */

sleep(1);
}
return 0;

}

Program 1: A server program with a Mobile-C agency.

with default settings by function MC Initialize(). A mutex variable is initialized to have an ID
55 by function MC SyncInit(). As shown in Program 1, when this mutex variable is locked by
function MC MutexLock(), it is guaranteed that the desired service and the agent providing the
service on the local agency are protected. Thus, the simultaneous access of the desired service and
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Figure 5. Service managing thread in Mobile-C.

the agent on the local agency can be avoided. Function MC SearchForService() is used to search
for a service in an agency after the mutex variable is locked. The mutex variable can be unlocked
by function MC MutexUnlock() to allow for the access of the desired service and the agent by
other mobile agents. As shown in Figure 3, the server program will keep searching for a desired
service if the service cannot be found. Therefore as shown in Program 1, when this happens, the
server program will unlock the mutex variable to allow any mobile agent to register the desired
service with the DF, and then lock the mutex variable again for the next search of the desired
service.
Once function MC SearchForService() is called; it places a search request in the request list

shown in Figure 5. The service managing thread processes a search request by searching for a
specified service in the service provider list. Each node in the service provider list points to a
persistent agent whose single or multiple services have been registered with the DF. After the
service managing thread completes processing a search request, the results such as the names,
IDs, and number of all the persistent agents providing the specified service will be returned and
stored in function MC SearchForService()’s arguments. As shown in Program 1, the first agent
providing thematrix operate service is obtained with its ID through functionMC FindAgentByID().
Function MC CallAgentFunc() is then used to call the agent space function, matrix operate(),
which implements the desired service. Arrays a and b are passed to function matrix operate() as
two arguments for computation purposes, and array c is used to take the resultant matrix returned
by function matrix operate(). Function MC DestroyServiceSearchResult() is used to release the
previous search result obtained by function MC SearchForService() regarding the names and IDs
of all the persistent agents that provide the specified service.
Program 2 shows the template for a persistent mobile agent with a single task sent to the server

shown in Program 1. The agent carries three kinds of information. First, information about itself
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<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobileagent</NAME>
<OWNER>IEL</OWNER>
<HOME>bird2.engr.ucdavis.edu:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0"

complete="0"
return="no-return"
persistent="1"
server="bird1.engr.ucdavis.edu:5130">

</TASK>
<AGENT_CODE>
<![CDATA[

C/C++ mobile agent code

]]>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 2: Template for a persistent mobile agent with a single task sent to the server program
shown in Program 1.

including its name, owner, home address. Second, overall information about the task it has to do.
The statement

<TASKS task=“1”num=“0”>

shows that this mobile agent has one task to perform and no task has been finished yet. Third,
detailed information about the task including the persistence of the agent, the name of the
task’s return variable, the completeness of the task, the host to perform the task, and most
importantly, the C/C++ agent code that implements the task. Since the flag persistent is set
to 1, the agent is a persistent agent that will not be removed from an agency once its code
has been executed. The flag persistent can be set to 0 for a non-persistent mobile agent. A
mobile agent is not persistent by default if this attribute is omitted. In addition to the template
shown in Program 2, in Mobile-C, a mobile agent can also be composed in such a way that it
contains multiple tasks with a single agent code block or multiple tasks with multiple agent code
blocks [16].
The Mobile-C library provides mobile agent space functions that can be called in a mobile agent

code to perform tasks just like their counterparts could do in the binary space. For instance, the
binary space function MC SearchForService() mentioned above has a counterpart in the mobile
agent space, function mc SearchForService(), which can be called in a mobile agent code to search
for a given service in an agency.
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Figure 6. Flowchart of the main() function of the mobile agent code used in the matrix computation example.

Figure 6 illustrates the flowchart of the main function of the mobile agent code in this example.
The main() function first searches for a given service. If no mobile agent has provided the
service, the service provided by the current mobile agent will be registered with the DF. On
the other hand, if an existing mobile agent is found to have already provided the service, the
service provided by this mobile agent will be deregistered first. Afterwards, the current mobile
agent’s service will be registered with the DF. Since the flag persistent for a mobile agent
providing services is set to 1, deregistering the services provided by such a mobile agent only
removes the services from the service list shown in Figure 5 associated with the mobile agent.
It does not remove the mobile agent from the agency. However, if the incoming mobile agent
code contains function mc DeleteAgent() to delete an existing mobile agent described above,
the existing mobile agent’s status will be changed so that the Agent Managing Thread will
remove the mobile agent structure for this agent from the mobile agent structure list shown in
Figure 4.
Two mobile agents, mobileagent1.xml and mobileagent2.xml, based on the template shown in

2 are sent to the server. Program 3 shows the agent code in the mobile agent mobileagent1.xml.
The mobile agent mobileagent2.xml is the same as mobileagent1.xml except for the difference in
the implementation of function matrix operate() shown in Program 4. As illustrated in Program 3,
function mc SearchForService() is called to search for a given service in an agency. If no mobile
agent provides service matrix operate, then service matrix operate provided by the current mobile
agent is registered through function mc RegisterService() with system variable mc current agent.
Once function mc RegisterService() is called, it places a register request in the request list. The
service managing thread processes a register request by storing the name and ID of the specified
mobile agent and the services the mobile agent is intended to provide in the service provider list.
In this example, since only one mobile agent is sent to the server at a time, no matter which
agent is sent first, function mc DeregisterService() is used to remove the information of the first
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Figure 7. Output from the server for the matrix computation example.

mobile agent from the service provider list for service matrix operate. Once the service provided
by the first mobile agent is deregistered, the service provided by the current mobile agent is then
registered. Programs 3 and 4 implement service matrix operate with the following two different
algorithms:

C = BA−1+3ABT (1)

C = 5AT−7B−1ABT (2)

where A, B, and C are 2×2 matrices. Arrays a and b passed from the binary space can be cast to
Ch computational arrays a and b in the mobile agent space. With Ch computational arrays, we can
specify vector and matrix operations directly in the same way as we do with scalars in the mobile
agent code. As a running example, mobile agent mobileagent1.xml with an agent code shown in
Program 3 is first sent to the agency initialized in the server shown in Program 1. Afterwards, mobile
agent mobileagent2.xml, whose mobile code is to replace the previous matrix operate service, is
sent to the same agency. The output from the server is shown in Figure 7. In this example, matrices
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#include <stdlib.h>
#include <string.h>
#include <array.h>

int main() {
int i, numService = 1, mutex_id = 55, *agentID, numResult;
char *funcname = "matrix_operate", **service, **agentName, **serviceName;
MCAgent_t agent;

service = (char **)malloc(sizeof(char *)*numService);
for(i=0; i<numService; i++) {
service[i] = (char *)malloc(sizeof(char)*(strlen(funcname)+1));

}

strcpy(service[0], funcname);

mc_SearchForService(service[0], &agentName, &serviceName, &agentID, &numResult);

if(numResults < 1) {
/* No agent is found to have provided such a service. */
mc_RegisterService(mc_current_agent, service, numService);

}
else {
/* An existing agent is found to have provided such a service. */
mc_MutexLock(mutex_id);
mc_DeregisterService(agentID[0], service[0]);
mc_RegisterService(mc_current_agent, service, numService);
mc_MutexUnlock(mutex_id);
mc_DestroyServiceSearchResult(agentName, serviceName, agentID, numResult);

}

for(i=0; i<numService; i++) {
free(service[i]);

}
free(service);

return 0;
}

array double matrix_operate(array double a[2][2], b[2][2])[2][2] {
return b*inverse(a) + 3*a*transpose(b);

}

Program 3: The mobile agent code for the mobile agent mobileagent1.xml in Program 2.

array double matrix_operate(array double a[2][2], b[2][2])[2][2] {
return 5*transpose(a) - 7*inverse(b)*a*transpose(b);

}

Program 4: Service matrix operate provided by mobileagent2.xml.

A and B are specified as follows:

A =
[
1 2

3 4

]

B =
[
5 6

7 8

]
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The resultant matrices are shown as follows:

C =
[
50 71

115 162

]
for the algorithm in Equation (1)

C =
[−338 −454

276 384

]
for the algorithm in Equation (2)

In this example, regardless of the output portion for array c in Program 1, when there is already an
agent in the local agency to provide the desired servicematrix operate, the average time to complete
one iteration of the outer while-loop in Program 1 is 260�s on a Linux machine with 256 MB
of RAM and an Intel Pentium 4 CPU running at 1400MHz. Such an iteration includes function
calls to MC MutexLock(), MC SearchForService(), MC FindAgentByID(), MC CallAgentFunc(),
MC MutexUnlock(), and MC DestroyServiceSearchResult(). When a new mobile agent arrives at
the local agency to replace the existing algorithm of the desired service matrix operate, the average
time to complete one iteration of the outer while-loop in Program 1 is 1118�s. Afterwards, the
time to complete such an iteration reverts back to an average of 260�s. The overhead, 1118−260=
858�s, is a one-time overhead associated with the algorithm replacement. The specific factors that
contribute to the overhead include the parsing and execution of the new mobile agent as well as
the deregistration and registration of services performed by the new mobile agent. The factors that
contribute to the overhead are unaffected by the algorithm of a service. Therefore, even when the
algorithm of a service becomes complicated, the overhead due to the algorithm replacement remains
constant.

6. APPLICATION: RUNTIME REPLACEMENT OF A MOBILE ROBOT’S
BEHAVIORAL ALGORITHM WITH A MOBILE AGENT

Mobile robots are increasingly being deployed to perform tasks that are unpleasant or dangerous
for human beings; for instance, bomb disposal, space or undersea exploration, mining, and cleaning
of toxic waste. Uncertain and unforeseen events are very likely to occur in those unstructured
environments. A mobile robot often cannot be pre-programmed to handle those uncertainties. With
mobile agent paradigm, a user can create mobile agents that contain newly developed algorithms
and migrate among desired mobile robots to replace improper algorithms at runtime.
A scenario that can prominently show mobile agent paradigm’s advantage is that a mobile agent

carries pieces of code to be run on multiple mobile robots. A piece of code can represent an
algorithm. For example, there are 10 mobile robots (MRobot1 to MRobot10) with one steering
host (Steer). A piece of code on MRobot1 to MRobot5 is to be replaced with Code1, and a piece
of code on MRobot6 and MRobot10 is to be replaced with Code2. A mobile agent, MAgent1, is
created by a user in such a way that MAgent1 carries Code1 and Code2 and will visit MRobot1 to
MRobot5 successively for Code1 execution and will visit MRobot6 to MRobot10 successively for
Code2 execution. The network transformation between the steering host and mobile robots only
includes migrating MAgent1 from Steer to MRobot1. Once MAgent1 is sent out from Steer, it will
perform its tasks regardless of whether Steer stays online or not.
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Figure 8. Khepera III mobile robot performing object avoidance.

Figure 9. Khepera III mobile robot performing object following.

Control programs for mobile robots are typically written in C/C++ because the underlying
hardware interface packages for mobile robots are typically developed in C/C++. In the MACS,
through the Mobile-C library, a program running on a mobile robot can encompass Mobile-C to
support C/C++ mobile agent code that represents a runtime replaceable algorithm. The C/C++
mobile agent code is run interpretively as a script in Mobile-C. Therefore, the MACS allows a
user to compose a mobile agent with newly developed algorithms as the C/C++ agent code and
directly send out the mobile agent to perform algorithm replacement on multiple desired mobile
robots.
In this section, we will validate the MACS by replacing a mobile robot’s behavioral algorithm

via a mobile agent at runtime through an experiment with a K-Team Khepera III mobile robot [58]
as shown in Figures 8 and 9 [59]. Even though this validation only involves algorithm replacement
on a single mobile robot due to the number of mobile robots we currently have, it does not impede
the MACS’s ability to successfully carry out the multiple mobile robot scenario described above.
The Khepera III mobile robot is equipped with the KoreBot board, an ARM -based computer.

The KoreBot board has 64 Mbytes of RAM and an embedded Linux operating system that provides
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a standard GNU C/C++ environment for the development of applications using the Mobile-C
library. Through the KoreBot board, the Khepera III mobile robot is also able to host a standard
CompactFlash extension card supporting Wi-Fi, Bluetooth, or extra storage space. The Khepera III
mobile robot base includes nine infrared sensors for object detection and five ultrasonic sensors for
long range object detection.
In this experiment, a program with an embedded agency is running in the mobile robot. The

agency is started with default modules, the AMS, ACC, and DF. An AEE will be launched for each
mobile agent arriving at the agency.
Agent service provider 1 containing five functions, InitRobot(), SensorMatrix(), RobotBe-

haviour(), MoveRobot(), and StopRobot(), is first sent to the robot to register those functions
as services with the DF. Agent mobagent1 is then sent to the robot, triggering the registered
services to make the robot avoid objects. The service leading to this object avoidance behavior
is service RobotBehaviour that corresponds to function RobotBehaviour(). The implementa-
tion of this function is based on the Braitenberg object avoidance algorithm [60]. As shown
in Figure 8, the Khepera III mobile robot will wander through the field avoiding the walls
and cups.
The mobile robot’s trajectory depends on service RobotBehaviour, which implements the robot

behavioral algorithm. The robot behavioral algorithm calculates the robot’s left and right wheel
speeds, which will be fed in the robot’s left and right motors as inputs. Therefore we use the root-
mean-square (RMS) wheel speed of the mobile robot to indirectly show the mobile robot’s runtime
behavior. The RMS wheel speed of the mobile robot is calculated using Equation (3).

RMS wheel speed=
√

(Left wheel speed)2+(Right wheel speed)2

2
(3)

In Figure 10, the X -axis value is the ordinal number for calling service RobotBehaviour on
the mobile robot, and the Y -axis value is the RMS wheel speed of the mobile robot. As shown
in Figure 10, during the first 100 times when service RobotBehaviour is called, the underlying
algorithm that service RobotBehaviour performs is the object avoidance algorithm. This service
is provided by agent service provider 1. Some high RMS wheel speeds in this curve section
are induced when the mobile robot rapidly changes its direction and moves away from the
object.
While the mobile robot is wandering through the field and avoiding objects, agent service

provider 2 carrying another RobotBehaviour service is sent to the robot. The intention of sending
this agent is to change the robot behavior on the fly. Therefore, agent service provider 2 deregisters
the RobotBehaviour service provided by agent service provider 1 and registers its own RobotBe-
haviour service with the DF, according to the methodology illustrated in Section 5.
The second RobotBehaviour service will cause the robot to follow a moving object. Therefore,

once agent service provider 2 is sent to the robot, the walls and one of the cups are removed.
As shown in Figure 9, the remaining cup is dragged by a hand around the robot for it to
follow.
As shown in Figure 10, at the 101th time when service RobotBehaviour is called, the underlying

algorithm that service RobotBehaviour performs is the object following algorithm. This service is
provided by agent service provider 2. The mobile robot now follows a moving object, which is
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Figure 10. Root-mean-square wheel speeds of the Khepera III mobile robot in action under the object avoidance
and object following algorithms.

slowly dragged by hand, does not avoid static objects as previously illustrated. As a result, the RMS
wheel speeds of the mobile robot do not promptly increase, as shown in the second curve section
of Figure 10.
The object following behavior is implemented by modifying the Braitenberg object avoidance

algorithm. The sensor weights of the Braitenberg object avoidance algorithm are swapped to drive
the opposite motor rather than the one originally specified. In addition, the weighted sensor values,
which are directly associated with the distance between the robot and the cup, are negated and then
summed up to determine the speed of each motor. These modifications provide the opposite effect
of object avoidance by making the robot move toward the cup. In addition, the speed limit is set so
that the robot will not bump into the followed target. Therefore, the robot will follow the moving
cup until it reaches the speed limit, for either the left or right motor, at which time it will stop, as
shown at the end of the second curve section of Figure 10.
The mobile code flowchart for agent mobagent1 regarding the search and invocation of Robot-

Behaviour service is shown in Figure 11. The flowchart is identical to the one shown in Figure 3
except that the Mobile-C agency is not initialized through an agent code. The mobile robot
behavior is changed seamlessly on the fly without the need to stop and modify the running agent
mobagent1. The main() function flowchart for agents service provider 1 and service provider 2
are the same as the one shown in Figure 6. Besides, because agents service provider 1 and
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Figure 11. Flowchart for the mobile code of agent mobagent1 regarding the search
and invocation of RobotBehaviour service.

service provider 2 are both persistent agents, the deregistered RobotBehaviour() service that
belongs to agent service provider 1 still exists inside the agency that runs in the robot. Thus, if
needed, the deregistered RobotBehaviour() service that allows for object avoidance can be easily
registered with the DF again through a mobile agent to replace the current RobotBehaviour()
service.
Using the Mobile-C library, robot behaviors can be easily modified by simply sending over a

new mobile agent to the mobile robot. The application programs described in this section can be
downloaded from the Internet [59].

7. CONCLUSIONS

The MACS for distributed applications has been presented in this article. In the MACS, programs
running on the steering and computing hosts are C/C++ programs and encompasses a mobile agent
platform, Mobile-C, to handle the operations regarding the mobile agents that carry C/C++ agent
code. Mobile-C is embedded in a program through the Mobile-C library. In the MACS, runtime
replaceable algorithms of a program are represented as agent services in C/C++ source code
and can be replaced with new ones through mobile agents. In the MACS, a mobile agent created
and deployed by a user from the steering host migrates to computing hosts successively to replace
algorithms of running programs that constitute a distributed application without the need of stopping
the execution and recompiling the programs. The methodology of dynamic algorithm alteration in
the MACS has been described in detail with an example of matrix operation. An experiment in
runtime replacement of a mobile robot’s behavioral algorithm with a mobile agent has been used
to validate the feasibility of the MACS in real-world mobile robot applications regarding dynamic
software reconfiguration.
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The Mobile-C library enables the integration of Mobile-C into any C/C++ programs to carry
out computational steering through mobile agents. The source code level execution of mobile agent
code facilitates handling issues such as portability and secure execution of mobile agent code. In
the MACS, the network load between the steering and computing hosts can be reduced, and the
successive operations of a mobile agent on multiple computing hosts are not affected whether the
steering host stays online or not.
The employment of the middle-level language C/C++ allows the MACS to accommodate a

variety of distributed applications. For example, in multidisciplinary research areas, scientific data
sets that an application needs to process can be of multiple terabytes, located remotely in different
computers, and are produced by a variety of sources such as different remote sensing instruments
or applications. Such data sets are likely to encompass a variety of sampling rates, data geometries,
and error characteristics. Multiple algorithms are available that enable the visualization and analysis
of such data sets. To avoid huge raw data transmission, each algorithm needs to be executed on-site
to process the raw data locally and may need to be replaced at runtime.
It is expected that theMACS will find its applications in a wide range of scientific and engineering

fields to allow for runtime interaction and computational steering of distributed applications to
match the dynamic requirements imposed by the user or the execution environment.
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