
Open Source Ch Control
System Toolkit and Web-Based
Control System Design for
Teaching Automatic Control of
Linear Time-Invariant Systems
BO CHEN,1,2 YU-CHENG CHOU,3 HARRY H. CHENG4

1Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, Michigan

2Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, Michigan

3Department of Mechanical Engineering, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan

4Integration Engineering Laboratory, Department of Mechanical and Aerospace Engineering, University of California at
Davis, Davis, California 95616

Received 4 August 2009; accepted 3 May 2010

ABSTRACT: The Ch Control System Toolkit (CCST) is a software package for the design and analysis of con-
trol systems. It is a C/C++ class with member functions for solving control problems in a user-friendly C/C++
interpreter, Ch. Based on the CCST, a Web-based Control System Design and Analysis System (WCSDAS), and
a Web-based Controller/Compensator Design Module (WCCDM), have been developed. In this article, using the
CCST, WCSDAS, and WCCDM for teaching automatic control of linear time-invariant systems is presented. With
the CCST, students are able to solve control problems with only a few lines of C/C++ code. The CCST can also
be used to develop various interactive utility programs that will assist students in learning control systems with-
out any programming requirements. With the Web-based WCSDAS and WCCDM tools, students can interactively
design and analyze control systems via a Web browser. The CCST, WCSDAS, and WCCDM are open source software
packages. These software tools have been used for teaching undergraduate control courses at the University of
California, Davis and Michigan Technological University. © 2010 Wiley Periodicals, Inc. Comput Appl Eng Educ;
Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20454

Keywords: control systems; Web-based education

INTRODUCTION

Automatic control has become a major field in almost every
engineering subject, and its courses are part of the respective
engineering curricula [1]. Due to the advances of mathematics and
computing technology, the modern control engineering design and
analysis methods have greatly expanded the range of problems
that can be solved. The increasingly computational intensive
methodologies call for the development of innovative teaching
ware and laboratory experiments to improve the effectiveness

Correspondence to B. Chen (bochen@mtu.edu).
© 2010 Wiley Periodicals, Inc.

of control education. A number of software packages, such
as MATLAB Control System Toolbox (www.mathworks.com/
products/control) and Mathematica’s Control System Professional
(www.wolfram.com/products/applications/control/index.html),
have been developed and made commercially available for the
purposes of computer-aided control system design and analysis.

In the past few decades, many interactive tools have also been
developed for teaching and learning automatic control. The use of
interactive tools would reinforce active participation of students
in learning by directly manipulating graphical representations of
systems and getting instant feedback on the effects [2,3]. Exper-
iments have shown that a high degree of interactivity can speed
up learning and obtain an intuitive feeling for control concepts

1

2 CHEN ET AL.

through dynamic visualization. The idea of “dynamic pictures”
was introduced in [4]. Dynamic pictures are based on graphi-
cal user interface and built up as interactive modules that can be
manipulated through a mouse. If changes are made in a dynamic
picture, an immediate recalculation and presentation automatically
begins. Also, each dynamic picture is tailored to illustrate a spe-
cific concept. This novel feature can be found in many educative
tools, such as ICTools [3,5] and a suite containing PID-Basics,
PID-Loop-Shaping, and PID-Windup [6,7]. Easy Java Simulations
(Ejs), a Java-based tool that helps create interactive dynamic sim-
ulations, was introduced in [2]. Ejs can be used on its own to
generate standalone Java applications or applets, or in conjunction
with MATLAB/Simulink that acts the internal engine to describe
and solve system models. A Sysquake-based tool was introduced
in [8] for nonlinear control systems. The tool can help students
understand fundamental concepts in nonlinear control, such as the
behavior of piecewise linear systems, stable and unstable limit
cycles and the describing function method. A two-dimensional
time-domain field simulation software tool called MEFiSTo-2D
Classic [9] was developed to illustrate fundamental electromag-
netic concepts that are traditionally described by mathematical for-
mulas. MEFiSTo-2D Classic transforms abstract electromagnetic
concepts into realistic images on the screen. A LabVIEW-based
tool was introduced in [10] to offer a set of comfortable, ready-
to-use solutions for plant identification, loop-shaping, and LQR
(Linear-Quadratic-Regulator)/LQG (Linear-Quadratic-Gaussian)
controller design and implementation.

As the World Wide Web (WWW) widely spreads, Web-based
control system design and analysis tools and virtual laboratories
are emerging as a promising technology that could greatly improve
the teaching and student learning of the control systems. These
tools make students more actively involved in control courses and
are effective for distance learning [11,12]. The Web-based inter-
active computing tools allow students to try out different solutions
and explore new design strategies easily by observing results that
is instantly generated on the Web. Web-based laboratories can be
divided into two categories: virtual and remote. A virtual labo-
ratory allows clients to continuously access a simulation process
in a remote server. The simulation engine in the server could be
MATLAB or any other control toolkit. A remote laboratory offers a
physical experimental apparatus to remote users through the Inter-
net. Most existing Web-based control laboratories use MATLAB
as a computational engine.

Kypuros and Connolly [13] developed virtual systems for
a System Dynamics and Controls course. Each virtual system
is a user-configurable numerical simulation of a physical sys-
tem and can generate animations for dynamic responses of that
physical system. The virtual systems are used to aid students’
visualization and enhance students’ in-lab experience. Two vir-
tual Web-based laboratories for the controller design experiments
in a Control Systems course are presented in [14]. The first vir-
tual laboratory provides predefined simulation problems to support
computer-aided controller design. The second virtual laboratory
allows students to create their controller design experiments by
writing MATLAB programs to be executed via the MATLAB Web
Server (MWS). A student survey showed that the reliability of the
MWS needs to be improved. Students preferred the second unstruc-
tured MATLAB-like environment. A Java LAPACK-based virtual
system for teaching an introductory Control Engineering course
is presented in [15]. The system provides basic functions for time
domain and frequency domain response analysis, stability, and PID
controller and compensator design. A Java and MATLAB-based

remote laboratory for an automatic control course is presented in
[16]. The system was used as a complementary activity to students’
on-site laboratory work. Compared to students who do not use the
environment, students who use the environment have better analyt-
ical skills during the design and tuning phases of a control system.
A Java-based system, acting as both virtual and remote laborato-
ries, is presented in [17] for simulation and remote operation of
Controller Area Network (CAN) devices.

Most of the developed virtual and remote laboratories are
based on commercial computational engines, such as MATLAB.
These Web systems need an additional application server program
to connect the Web interface and the computational engine. In
this paper, an open source Ch Control System Toolkit (CCST),
Web-based Control System Design and Analysis System (WCS-
DAS), and Web-based Controller/Compensator Design Module
(WCCDM), for teaching automatic control systems are presented.
The CCST provides basic building blocks to model, analyze, and
design control systems. Implemented in C/C++, it offers a unique
feature for smoothly integrating with real-time control software.
The open source nature of these three software packages allows
instructors and students to develop new simulations and experi-
ments as needed. In addition, students can read the source code
and understand how the control principles and algorithms are
implemented. Developed in the Ch environment, the Web-based
applications based on the CCST can be easily implemented using
the Common Gateway Interface (CGI) supported in Ch.

The rest of the paper is organized as follows. The second sec-
tion introduces the CCST. The third section describes a WCSDAS.
The fourth section presents an extension of the WCSDAS. The fifth
section presents the integration of the CCST and WCSDAS into
teaching and learning for automatic control courses. Examples are
given in the fifth section to demonstrate utilizing the presented
software tools to solve different kinds of control problems. An
extension of the WCSDAS, a WCCDM for interactive controller
design via the root locus, is also presented in the fifth section. The
effectiveness of using these software packages for teaching and
learning automatic control systems is assessed and the evaluation
results are discussed in the sixth section. Finally, the conclusions
are made in the seventh section.

CH CONTROL SYSTEM TOOLKIT

The CCST (www.softintegration.com/products/toolkit/control)[18]
is an object-based software package. It is developed in a C/C++
interpreter – Ch (www.softintegration.com)[19–21]. The CSST
provides a C/C++ control class with member functions for the
modeling, analysis, and design of linear time-invariant (LTI)
control systems. The CCST provides commonly used functions
in control systems design and analysis, such as time-domain
response, frequency-domain response, system analysis, system
design, model conversion, and system conversion. Most functions
can be applied to both continuous- and discrete-time LTI systems,
which are modeled in single-input, single-output (SISO) and
multi-input, multi-output (MIMO) state-space equations, transfer
functions, or zero-pole-gain representations. The functional
modules of the CCST are outlined in Table 1. The CCST has
been widely used in the industry for solving practical engineering
problems and in the academia for instructional improvement.

Traditionally, the control system design and simulation are
often done in a mathematically rich computing environment such
as MATLAB and Mathematica. Code written in these environ-

TEACHING CONTROL USING Ch CONTROL TOOLKIT 3

Table 1 Functional Modules of the Ch Control System Toolkit

Create LTI models Model data extraction
Model conversion System conversion (continuous—discrete)
System interconnections System gain and dynamics
Time domain analysis Frequency domain analysis
Root locus Controllability and observability
Pole placement design Linear-quadratic regulator design
Equation solvers Plot customization

ments, however, is not directly usable in real-time control systems.
Although most of these environments provide translators to convert
the control code into a language useful for the real-time control
(most likely, the C language), the reproduction of the program
code can be error prone. Besides, the computer generated C code
may not be well organized and understandable under some circum-
stances. Therefore, it can be difficult to maintain the generated C
code and integrate it into a large-scale software system.

There are some other MATLAB-like interpretive program-
ming languages, such as Sysquake and Scilab, which provide the
same group of commands for control tasks as those found in MAT-
LAB. Both Sysquake and Scilab are software packages designed
for numerical computation and scientific visualization. The major
purpose of these two software packages is to offer facilities for
interactive calculations and visualizing the data and computa-
tion results. Integrating with Apache, Sysquake Remote enables a
server to send the computation results to a client in text or graphics
embedded in HTML files.

The CCST is developed in a C/C++ interpreter, with exten-
sions of numerical and matrix computation and 2D/3D plotting.
Implemented in C/C++, the CCST can seamlessly interface with
other C/C++ programs, such as C code for accessing memory
using pointers and input/output control in real-time embedded
systems. The characteristic of the CCST enables users to do
the modeling, analysis, design, and real-time control all in one
language, which eliminates bugs introduced through the code
translation. Moreover, a large body of existing C/C++ libraries,
such as graphical user interface in X11/Motif, Windows, GTK
and 3D graphics in OpenGL, computer vision in OpenCV, data
acquisition in NI-DAQ and motion control in NI-Motion, is readily
available for application development.

The CCST offers most features found in the MATLAB Con-
trol System Toolbox. A detailed syntax comparison between the
CCST and the MATLAB Control System Toolbox can be found at
www.softintegration.com/products/toolkit/control/ch matlab.html.
Multiple sample programs using both approaches for solving
same problems are also compared on the Web at www.
softintegration.com/demos/toolkit/control. Since the CCST is
developed on top of Ch and the Common Gateway Interface
(CGI) is supported in Ch (www.softintegration.com/products/
toolkit/cgi), Web-based control systems/tools such as the
WCSDAS introduced in the next section can be developed
straightforwardly by integrating the CCST, Ch, and Ch CGI.

WEB-BASED CONTROL SYSTEM DESIGN AND
ANALYSIS SYSTEM

The WWW is a natural candidate to implement software tools that
allow students to interact with the subject matter anytime any-
where. The WWW is platform and location independent, and it is

Figure 1 Web-based systems using MATLAB as the computational
engine.

effective for distance learning where an Internet connection is all
that is needed. Based on the CCST, we have developed a WCS-
DAS [22]. The main idea of designing such a Web-based tool
is to use the WWW as a communication infrastructure to allow
multiple users to access Ch-based computational toolkits such as
the CCST. In the WCSDAS, a Web browser provides an environ-
ment for accepting users’ input and transmitting users’ input to a
Web server. The Web server supports the execution of CCST func-
tions and interfaces with clients through CGI and HTML files. The
computation time is not hindered by the network speed between
the server and client machines because the computation is per-
formed purely on the server machine. The WCSDAS provides
students with a great opportunity to learn control theories and pro-
totype control systems on the Web at any time and location they
desire.

From the development point of view, using the CCST to
implement a Web-based control system is simpler than the MAT-
LAB Control Toolbox. For a MATLAB-based Web system, an
additional application server program, matlabserver, is needed
for the communication between the Web server process and the
MATLAB process, as shown in Figure 1. The major compo-
nents of a MATLAB Web server include: matweb, matlabserver,
and matweb.m. The matlabserver manages the communication
between the Web application and MATLAB. It invokes matweb.m,
which in turn runs the M-files to perform necessary computation
and generate an output HTML document. The matweb is a TCP/IP
client of the matlabserver. It uses CGI to extract data from an
input HTML document and transfer these data to the matlabserver
through TCP/IP communication. The matlabserver and matweb
can locate within a single computer (but different processes) or
separate computers.

In contrast to a MATLAB-based Web system, Ch CGI can
directly communicate with Ch scripts as shown in Figure 2. There is
only one process. Ch CGI acts as an interface between a Web server
and Ch scripts. Ch scripts extract data from an input HTML doc-
ument, use the extracted data to perform calculations, and create
an output HTML document with the computation results.

4 CHEN ET AL.

Figure 2 Web-based systems such as the WCSDAS using Ch as the
computational engine.

AN EXTENSION OF WEB-BASED CONTROL SYSTEM
DESIGN AND ANALYSIS SYSTEM

Since the CCST, WCSDAS, and Ch CGI are all C-based, open
source, and open architecture software packages, all the member
functions of the CCST and all the internal functions and pro-
grams of the WCSDAS can be reused or modified to develop new
Web-based tools. These augmented Web-based tools play a role

of extending and complementing the functionalities of the WCS-
DAS. Therefore, they not only can extend the functionalities of the
WCSDAS to cover a variety of different aspects in the automatic
control filed, but also can address the difficulties that students may
encounter in learning the design and analysis of control systems.

In this paper, a WCCDM is used as an example to demonstrate
the extensibility of the WCSDAS. With the WCCDM, the perfor-
mance change of a control system due to the variation of system
parameters is observed immediately on the Web. The WCCDM
helps students relate the system performance with the parame-
ters or variables being manipulated. The implementation of the
WCCDM is straightforward by following the design pattern of the
WCSDAS. In addition, a number of internal functions and some
of the source code of the WCSDAS as well as some member func-
tions of the CCST are used in the implementation of the WCCDM.
Using the WCCDM to solve a sample compensator design prob-
lem will be presented in detail in a later section. The WCCDM is
available for downloading at iel.ucdavis.edu/course/EME172.

The file structure of the WCDDM is shown in Figure 3. A user
selects option for Lag compensator design or Lead compensator
design on the WCCDM’s homepage, named index.html, through
a Web browser. When the user clicks the “Continue” button on
the index page, a Ch CGI script named compensator design.ch is
automatically invoked, and the user’s selection is passed to the
script. The Ch CGI script calls corresponding Ch functions based
on the user’s selection. These Ch functions generate new web pages
to request additional information from the user, perform numerical
computation, make plots, and dynamically generate a final output
webpage to be displayed on the user’s Web browser. All the Ch
functions for the WCCDM are located in a Ch function library.
Each Ch function is implemented in a separate file that has the
same name as the function and a filename extension .chf, such as
LagPage.chf and LeadPage.chf shown in Figure 3.

A detailed explanation of the first few Web pages of the
WCCDM is presented below. The most important lines in the

Figure 3 The file structure of the WCDDM.

TEACHING CONTROL USING Ch CONTROL TOOLKIT 5

source code of the WCCDM’s index page are shown below

These lines of code handle the selection of the type of com-
pensator to be designed. When this HTML form is submitted, the
Ch CGI script compensator design.ch will be called to drive the
rest of the interaction between the Web server and the user’s Web
browser. The Ch CGI script invoked is specified by the action
attribute. Two radio buttons are created for selecting the type of
compensator to be designed. Depending on which radio button is
selected, the browser will pass either the value “Lag” or “Lead”
to the Ch CGI script compensator design.ch. Program 1 shows a
simplified version of the compensator design.ch.

#include <stdio.h>

#include "compensate.h"

int main()

{

int num, i;

chstrarray name, value;

num = Request.getFormNameValue(name, value);

Response.setContentType(contenttype);

Response.begin();

printf("<head>\n");

printf("<title>%s</title>\n", title);

printf("<style>#eqn {position:relative;top:8px;}</style></head>\n");

if(strcmp(value[0], "Lag") == 0)

{

LagPage();

}

else if(strcmp(value[0], "Lead") == 0)

{

LeadPage();

}

Response.end();

return 0;

}

Program 1. A simplified Ch CGI script for the WCDDM.

The header file compensate.h contains different kinds of
information, such as declarations of variables, macros, and func-
tions, and inclusions of other header files that are needed
to compose compensator design.ch. The variables “name” and
“value” are of type chstrarray. This data type is defined in the
Ch CGI package and denotes an array of strings. These vari-
ables will be used to hold the name and value retrieved from the
aforementioned HTML form using the following statement:

num=Request.getFormNameValue(name, value);

where “Request” is an instance of the CRequest class that is defined
in the Ch CGI package, and “getFormNameValue()” is a member
function of the CRequest class. The script sets the content type of
the Web page to be created and begins the CGI response with the
following statements:

Response.setContentType(contenttype);
Response.begin();

where “contentype” is a string defined in compensate.h,
“Response” is an instance of the CResponse class that is defined
in the Ch CGI package, and “setContentType()” and “begin()”
are member functions of the CResponse class. The script then
prints a rudimentary html header with three “printf()” statements.
Afterward, the program flow is diverted based on the selected
compensator’s type by the following statements:

6 CHEN ET AL.

if(strcmp(value[0], “Lag”) == 0)
{

LagPage();
}
else if(strcmp(value[0], “Lead”) == 0)
{

LeadPage();
}

where “LagPage()” and “LeadPage()” are Ch functions that create
the Web pages for lag compensator design and lead compensator
design, respectively. Finally, the script ends the CGI response by
the following statement:

Response.end();

where “end()” is a member function of the CResponse class.

INTEGRATING CH CONTROL SYSTEM TOOLKIT AND
WEB-BASED CONTROL SYSTEM DESIGN AND
ANALYSIS SYSTEM INTO TEACHING AND LEARNING
FOR AUTOMATIC CONTROL COURSES

The CCST, WCSDAS, and WCCDM were integrated into the
teaching and learning for an undergraduate course “Automatic
Control of Engineering Systems” at the University of California,
Davis. The interactive nature of these software packages allows
students to have a better understanding of lecture and discussion
examples through visualizing the immediate effects of parame-
ter changes on the system performance. These three software tools
were used for lecture and discussion session examples, homework,
and compensator design problems. In the beginning of the sum-
mer session, basic functionalities of the tools and sample programs
were introduced in the discussion sessions. The homework assign-
ments were graded weekly. Commonly made errors related to the
programming were discussed during the discussion sessions. In
addition, two lab sessions per week were used to help students
solve control problems using the CCST, WCSDAS, and WCCDM.
The students were also encouraged to ask questions via emails
and during office hours. Solutions for the homework and design
problems were posted on the course website after the assignments
were returned to the students. The close interactions among the
instructor, teaching assistant, and students allowed the instructor
to experience the students’ attitudes toward the software and give
feedback to the students promptly.

All the software packages and supplementary documents,
lecture and discussion presentation materials, and homework
solutions using these tools are available for downloading at
iel.ucdavis.edu/course/EME172. Following sections give several
examples of using the CCST, WCSDAS, and WCCDM for control
systems teaching and learning.

Use of Ch Control System Toolkit for Automatic Control
Courses

For students with programming experiences, the CCST is an
easy-to-use toolkit for writing programs to solve various prob-
lems associated with the design and analysis of control systems.
To help students without programming skill, we provide sam-

Figure 4 A unity feedback system with a plant having a transfer function
= 4/s(s + 2).

ple programs to illustrate the usage of each function in the
CCST package. These sample programs greatly help students
use the CCST package. As mentioned in the second section, the
CCST provides high-level control system design and analysis
functions, similar to functions offered by the MATLAB Control
System Toolbox. For an illustrative purpose, the following exam-
ple, a simplified homework problem where students are asked
to generate the Bode plot of a given plant, is used to compare
programs written with the CCST and MATLAB Control System
Toolbox.

Example 1: Bode plot of the plant in a unity feedback system
is shown in Figure 4.

Both of the Ch and MATLAB programs that output the Bode
plot of the plant are listed in Program 2 and Program 3, respectively.
In Program 2, the header file control.h that defines the macros
and prototypes of member functions in the CControl class needs
to be included at the beginning of the program. Objects of the
CControl and CPlot classes need to be instantiated for accessing
member functions of the CControl and CPlot classes, respectively.
The function CControl::model() is used to create a zero-pole-gain
model of the plant based on the plant’s poles, zeros, and gain. The
function CControl::grid() is used to generate grid lines for plots.
The function CControl::bode() is used to create the Bode plot of
the plant. Figure 5 shows the Bode plot generated by Program 2.
The Bode plot created using the CCST has a default frequency
range from 0.1 to 1,000 rad/s as shown in Figure 5. The MAT-
LAB program for solving Example 1 is shown in Program 3.
The function zpk() is used to create a zero-pole-gain format of
the plant. The function bode() is used to create the Bode plot of
the plant. The grid lines are added to the Bode plot by the func-
tion grid(). The Bode plot created by Program 3 is the same as
Figure 5.

The above comparison demonstrates that the CCST can
obtain the same solutions, through similar programs, as the MAT-
LAB Control Systems Toolbox. In addition, since the CCST is a
C-based, open source, and open architecture software, the CCST
is a proper candidate for developing diverse utility programs that
facilitate solving various control problems in real-time control
systems.

#include <control.h>
int main() {
 CControl plant;
 CPlot plot;
 double k = 4;

array double complex p[] = {0, -2};

 plant.model("zpk", NULL, p, k);
 plant.grid(1);
 plant.bode(&plot, NULL, NULL, NULL);
 return 0;
}
Program 2. Ch program that outputs the Bode plot

of the plant shown in Figure 4.

TEACHING CONTROL USING Ch CONTROL TOOLKIT 7

%This Matlab program will create a Bode plot
% with grid lines and a frequency range from
% 0.1 to 1000 rad/s.

k = 4;
p = [0, -2];

plant = zpk([], p, k);
bode(plant, {0.1, 1000});
grid on;

Program 3. Matlab program that outputs the Bode
plot of the plant shown in Figure 4.

Use of Web-Based Control System Design and Analysis
System for Interactive Teaching and Learning

With the WCSDAS, the control systems design and analysis are
performed using a Web browser on a client machine. Students can
select a design and analysis method and specify system model
type, system type, and system parameters in the Web browser. The
students’ inputs are validated, and informative error messages are
displayed when the inputs are not valid. These input data are then
transferred to a Web server for numerical computation, and the
simulation results are sent back to the client machine and displayed
in the client Web browser through the common gateway interface
(CGI) using the Ch interpretive environment. The capability of
immediate response to the system’s input makes the WCSDAS a
suitable interactive teaching and learning tool.

The design of the WCSDAS does not have a limit on the
number of people who can simultaneously access and use it. How-
ever, a Web server may set the maximum number of simultaneous

access. In addition, the WCSDAS uses the most primitive features
for the Web. Therefore, the system can be accessed through almost
all commonly used Web browsers in various different platforms.
It has been successfully tested using the Internet Explorer, Opera,
and Google Chrome Web browsers on Windows machines and the
Mozilla Firefox Web browser on Windows, Linux, and Mac OS
machines.

A unique feature of the WCSDAS is its ability to design,
analyze, and verify control strategies over the Internet without the
need of software installation, system configuration, or program-
ming. Students can focus on the control systems problems and
obtain the results immediately and interactively. The WCSDAS
provides one example for each function in the CCST to illustrate
its usage. By following these examples, entering system parame-
ters in Web forms, and clicking buttons to select different choices,
students can gain the design and analysis experience of control
systems. Figure 6 shows a partial view of the index page of the
WCSDAS.

In this section, using the WCSDAS to solve Example 1 is
demonstrated as follows. By clicking the “Bode diagram” hyper-
link on the index page shown in Figure 6, the front page of the Bode
response is popped up as shown in Figure 7. Selecting the “Zero-
pole-gain representation” and clicking the “Continue” button, a
plant definition page is generated as shown in Figure 8. Specifying
no zeros and two poles and clicking the “Submit” button, a new
page is brought up as shown in Figure 9, which allows students to
enter poles and the gain of the defining plant. Once finishing the
input, students click the “Run” button to display the Bode plot of
the plant as shown in Figure 10. From the previously described
procedure, students do not need to write any programs to solve
control problems by using the WCSDAS.

Figure 5 Bode plot generated by Program 2. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

8 CHEN ET AL.

Figure 6 A partial view of the index page of a Web-based control system design and analysis system. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 7 The front page of the Bode response function. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

TEACHING CONTROL USING Ch CONTROL TOOLKIT 9

Figure 8 The default plant definition page of the Bode response example. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 9 A Web page allowing users to define a plant. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

10 CHEN ET AL.

Figure 10 The Bode plots created by the WCSDAS for the system shown in Figure 4. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

Ch Control System Toolkit-Based Interactive Utility
Programs

The CCST is an appropriate toolkit for students with certain
programming experience to solve various control problems. For
complicated control system design and analysis, interactive utility
programs may be useful to assist students without any pro-
gramming experience. Since the CCST is open source and open
architecture, instructors are able to develop interactive programs
that allow students to input control system parameters and receive
system output from computer terminals. With interactive utility
programs, students can focus on comprehending the design and
analysis theories/principles without the need of worrying about the
programming issues. A lead compensator design problem given
below illustrates how to utilize CCST-based utility programs to
assist students in compensator design.

Example 2: For the system shown in Figure 4, design a lead
compensator so that the characteristic equation of the system has
a pair of dominant poles at −2 ± i2

√
3.

First of all, for students with programming experiences,
a concise Ch program, such as Program 4 in Appendix, can

be written with the CCST to solve this problem. Students can
assign different values to the compensator’s pole or zero to obtain
the corresponding system performance. On the other hand, for
students without programming experiences, a CCST based inter-
active program can be provided to assist them in solving this
problem. As an example, a simple interactive utility program, inter-
act leaddesign.ch, was developed based on Program 4 in Appendix
to provide a rudimentary interface to allow for sequential user
inputs as shown in Figure 11. The program interact leaddesign.ch
is available for downloading at iel.ucdavis.edu/course/EME172.
With this program, a student needs to define the plant, spec-
ify a dominant pole, and specify either the pole or zero of the
lead compensator. As shown in Figure 11, a student can accept
a default value by pressing the “Enter” key, or change a default
value by typing in a different number. Once a student completes
the input sequence, the compensator’s information, the corre-
sponding step response characteristics, and plots for the root
locus and step response of the compensated system will be dis-
played as shown in Figures 11–13, respectively. Repeating the
above process with new input values, students will have different
outputs.

TEACHING CONTROL USING Ch CONTROL TOOLKIT 11

Figure 11 A basic interface, provided by interact leaddesign.ch, allowing for sequential user inputs. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 12 Root locus of the system, created by interact leaddesign.ch, for the compensator’s zero at −3. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

12 CHEN ET AL.

Figure 13 Step response of the system, created by interact leaddesign.ch, for the compensator’s zero at −3. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Web-Based Controller/Compensator Design Module
for Lead/Lag Compensator Design

Traditionally, the design of a control system is an iterative pro-
cess. Each iteration consists of two steps. In the first step, the
unknown parameters of the system regarding the controller’s pole,
zero, and gain are calculated based on the design specifications.
In the second step, the performance of the system is evaluated
through simulation and compared to the given specifications. If
the system’s performance does not meet the design specifications,
the design variables are modified and a new iteration is carried on.
These repeated calculations and simulations impede students in
the process of comprehending the relationship between the system
performance and maneuvered design parameters.

A WCCDM can avoid previously mentioned repeated manual
calculations and simulations. With the WCCDM, the modification
of the system parameters produces an immediate effect on the
system’s response, which allows students to perceive the gradient
of change in the system performance due to the parameters they
modify. Currently, the WCCDM provides Lead/Lag compensator
design via the root locus. The frequency response design approach
with the Bode plot can be easily implemented and added to the
WCCDM using the CCST. Similar to the WCSDAS, the maximum
number of students who can access the WCCDM is determined by
a Web server. Like, WCSDAS, the WCCDM can be used through
various commonly used Web browsers in different platforms.

In this section, Example 3 is used to illustrate how to utilize
the WCCDM for the lead compensator design.

Example 3: For the system shown in Figure 4, design a lead
compensator so that the characteristic equation of the system has a
pair of dominant poles at −2 ± i2

√
3. The first design is to choose

the compensator’s pole at −20. The second design is to choose the
compensator’s zero at −4. Compare these two designs and select
the one that yields better system performances.

Figure 14 shows the front page of the WCCDM for the
Lead/Lag compensator design. Students can choose the type of

a compensator at the bottom of the front page. For solving Exam-
ple 3, students should select the “Lead compensation” option and
click the “Continue” button. Since the plant is given in zero-pole-
gain model, users can choose “Zero-pole-gain representation” on
The lead compensator design page shown in Figure 15. By click-
ing the “Continue” button, The plant definition page is brought
up as shown in Figure 16. This page gives a sample plant. Stu-
dents can also define a new plant in the lower portion of the
page. Here the sample plant, which matches the plant in Exam-
ple 3, should be used. The root locus plot of the uncompensated
system is displayed on the next page, The lead compensation
design specification page by clicking the “Root locus” button, as
shown in Figure 17. In this page, students can then specify the
lead compensation design specifications associated with the sys-
tem performance and the compensator parameters. There are two
ways to describe the desired dynamic response performance of the
compensated systems. The “Method I” specifies the percent over-
shoot and the settling time/rise time. The “Method II” chooses the
dominant pole’s locations. Here, “Method II” is selected to solve
the Example 3. Since the default values in the WCCDM are set
for the specifications used in the Example 3, by simply clicking
the “Submit” button, the uncompensated system’s root locus and
the step response as shown in Figure 18 are displayed at the upper
portion of the next page; and the compensated system’s character-
istics, root locus, and the step response as shown in Figure 19 are
outputted at the lower portion of the page. The lead compensator is
redesigned by choosing the compensator’s zero at −4, and the cor-
responding output for the compensated system is shown in Figure
20. Comparing the outputs shown in Figures 19 and 20, the first
design has better system performances, that is, shorter rise time
and settling time, and a smaller percent overshoot.

The WCCDM introduced in this section shows the potential
to extend the WCSDAS by developing complementary Web-based
tools. These augmented Web-based tools not only can extend the
functionalities of the WCSDAS, but also can help students avoid
tedious calculations associated with the compensator design.

TEACHING CONTROL USING Ch CONTROL TOOLKIT 13

Figure 14 The front page of the Web-based controller/compensator design module. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Figure 15 The lead compensator design page. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

14 CHEN ET AL.

Figure 16 The plant definition page. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 17 The lead compensation design specification page. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

TEACHING CONTROL USING Ch CONTROL TOOLKIT 15

Figure 18 The root locus and the step response of the uncompensated system. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 19 The system’s characteristics, root locus, and the step response of a compensated system with a lead pole at
−20. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

16 CHEN ET AL.

Figure 20 The system’s characteristics, root locus, and the step response of a compensated system with a lead zero at
−4. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

STUDENT EVALUATION

The Ch Control Systems Toolkit, WCSDAS, and WCCDM have
been used for teaching an undergraduate control course “Automatic
Control of Engineering Systems” at the University of California,
Davis. The Web-based tools, WCSDAS and WCCDM, were also
used as teaching tools for the course “Dynamic Systems and Con-
trols” at the Michigan Technological University. The effectiveness
of the software tools was evaluated through a questionnaire survey.
The classified questions in the survey are listed in Table 2. The
survey contains six types of questions with respect to students’
experience and proficiency of using different operating systems,
helpfulness of the software tools for the design and analysis of con-
trol systems, errors encountered when using these tools, sufficiency
of the error messages provided by the tools for error correction, fea-
tures of the tools that are preferred or could be added or improved,
and suggestions or comments for the course.

The survey was conducted both at UC Davis and Michigan
Tech. Overall, the students’ evaluations were quite positive. For
the survey conducted at UC Davis, most students found that the
CCST, WCSDAS, and WCCDM were very helpful for control
system design and analysis. Students liked the simplicity and ease

Table 2 Classified Questions in the Student Survey

1 Experience and proficiency of using different operating systems
2 Helpfulness of the CCST, WCSDAS, and WCCDM for the design

and analysis of control systems
3 Errors encountered when using the CCST, WCSDAS, and

WCCDM
4 Sufficiency of the error messages provided by the CCST,

WCSDAS, and WCCDM for error correction
5 Favorite features of the CCST, WCSDAS, and WCCDM, and

features that could be added or improved
6 Suggestions or comments for the course

of using these tools. They especially liked the Web-based tools.
Based on the collected data of the survey, although 73% of the stu-
dents in the class did not have C/C++ programming experience,
most of them were able to use the CCST by following the provided
example programs. Some students, however, recommended cover
more C/C++ topics either in discussion sessions or during lec-
tures. Student feedback at Michigan Tech was also very positive.
Some exemplary students’ comments are as follows: “Very user
friendly! Very cool (helpful) tool!” “The warning signs were con-

TEACHING CONTROL USING Ch CONTROL TOOLKIT 17

Table 3 Quantitative Survey Results for the Second to Fourth Types
of Questions in Table 2

Question Yes No Not sure Total

Did you find the WCSDAS helpful
for control systems design and
analysis?

42 4 13 59

Did you encounter any errors while
using the WCSDAS? Were the
error messages provided by the
WCSDAS adequate enough for
error correction?

5 52 2 59

Did you find the WCCDM helpful
for compensator design?

42 3 14 59

Did you encounter any errors while
using the WCCDM? Were the
error messages provided by the
WCSDAS adequate enough for
error correction?

6 47 6 59

cise, and made aware of the exact problem.” “I like the Root locus
sketching tool. I think it is great and needs no improvement. They
were very helpful and descriptive enough, very clear.” “I think this
is great tool, very useful and saves a lot of time when you need
results. Also, it is great that you don’t need to have the MATLAB
installed in your computer.” “I liked the user interface so that I
didn’t have to write Matlab code.” “Overall it is a very helpful
system that is easy to access from any computer.”

The quantitative survey results at Michigan Tech regarding
the WCSDAS and WCCDM are listed in Table 3. Table 3 shows
the survey results for the second to fourth types of questions in
Table 2. A total of 59 students took this survey. As for the WCS-
DAS, there are 42 students who found the WCSDAS helpful for
control systems design and analysis. There are only five students
who encountered errors such as incorrect format for input a for-
mula when using the WCSDAS. Those students also found the
error messages adequate enough to correct their errors. As for the
WCCDM, there are 42 students who found the WCCDM helpful
for compensator design. Similarly, there are only six students who
encountered errors when using the WCCDM. Those students also
found the error messages adequate enough to correct their errors.

CONCLUSIONS

Based on the CCST and the WCSDAS, the WCCDM has been
developed. The CCST, WCSDAS, and WCCDM have been used
for teaching the course of automatic control of engineering sys-
tems. With the CCST, students only need to write a few lines
of C/C++ code for solving complicated engineering problems
in the design and analysis of control systems. In addition, the
CCST functions can be easily integrated with C/C++ programs
to develop a diverse set of interactive utility programs that can
help students learn the design and analysis of control systems
without any programming requirements. The WCSDAS and the
WCCDM are platform and location independent. Complicated
control problems can be solved using these Web-based tools
without even writing a single line of code anytime anywhere
through a Web browser. The CCST, WCSDAS, and WCCDM
are open source and freely available for downloading from the
Internet for teaching and student learning. From a pedagogical
point of view, students can examine the source code to under-

stand theories and algorithms as well as their implementation
in software. They can modify the existing code to solve other
problems.

The CCST, WCSDAS, and WCCDM have been used to
teach undergraduate control courses at the University of Cali-
fornia, Davis and Michigan Technological University. Students’
feedback of using these tools for learning control system design
and analysis is quite positive. Students especially like the simplic-
ity of the Web-based learning tools. All these software packages,
utility programs, supplementary documents, lecture and discus-
sion presentation materials, and homework solutions using the
CCST, WCSDAS, and WCCDM are available for downloading on
the Internet (www.softintegration.com/products/toolkit/control).
They can be modified to adapt to similar courses in other institu-
tions. Because of the close tie to real-time hardware, our C/C++
based courseware and teaching strategy can also be used for teach-
ing other courses such as mechatronic systems.

ABBREVIATIONS

CCST Ch Control System Toolkit
WCSDAS Web-based Control System Design and Analysis

System
WCCDM Web-based Controller/Compensator Design Module

APPENDIX

#include <control.h>

int main() {
 // Define the plant
 double plant_k = 4;
 array double complex plant_p[] = {0, -2};

 // Specify a pole for the dominant pole pair
 array double complex dominant_p[] ={complex(-2, 2*sqrt(3))};

 // Specify the compensator's pole/zero
 array double complex comp_p[1], comp_z[1] = {-3};

 // Necessary variables
 CControl plant, comp, fb_sys, *ol_sys, *cl_sys;
 CPlot rlocus_plot, step_plot;
 double comp_k, tr, ts, os;
 array double fb_num[] = {1}, fb_den[] = {1};

 // Calculate compensator's pole/zero and gain as well as
 // corresponding step response characteristics of the compensated system
 plant.model("zpk", NULL, plant_p, plant_k);
 plant.compensatorZeroPoleGain(dominant_p, comp_z, comp_p, &comp_k);
 comp.model("zpk", comp_z, comp_p, comp_k);
 fb_sys.model("tf", fb_num, fb_den);
 ol_sys = comp.series(&plant);
 cl_sys = ol_sys->feedback(&fb_sys);
 cl_sys->stepinfo(&tr, &ts, &os, NULL, NULL, NULL, NULL, NULL);

 // Display compensator's information
 printf("\nCompensator:\n"
 " Pole: %f"
 " Zero: %f"
 " Gain: %f\n\n", real(comp_p), real(comp_z), comp_k);

 // Display corresponding step response characteristics
 printf("Rise time: %f\n", tr);
 printf("Settling time: %f\n", ts);
 printf("Percent overshoot: %f\n\n", os);

 // Display plots of root locus and step response for the compensated system
 ol_sys->rlocus(&rlocus_plot, NULL, NULL);
 cl_sys->grid(1);
 cl_sys->step(&step_plot, NULL, NULL, NULL, ts*2);

 return 0;
}

18 CHEN ET AL.

REFERENCES

[1] S. D. Bencomo, Control learning: Present and future, Annu Rev
Control 28 (2004), 115–136.

[2] J. Sanchez, S. Dormido, and F. Esquembre, The learning of control
concepts using interactive tools, Comput Appl Eng Educ 13 (2005),
84–98.

[3] M. Johansson, M. Gafvaert, and K. J. Astrom, Interactive tools for
education in automatic control, IEEE Control Syst Mag 18 (1998),
33–40.

[4] B. Wittenmark, H. Hagglund, and M. Johannson, Dynamic pictures
and interactive learning, IEEE Control Syst Mag 18 (1998), 26–32.

[5] M. Johansson and K. J. Astrom, Virtual interactive systems for
control education, in: Proceedings of the 35th IEEE Decision and
Control, Kobe, Japan, 1996, pp 3888–38889.

[6] J. L. Guzman, K. J. Astrom, S. Dormido, T. Hagglund, and Y. Piguet,
Interactive learning modules for PID control, IEEE Control Syst Mag
28 (2008), 118–134.

[7] J. L. Guzman, Interactive control system design, PhD dissertation,
University of Almeria, 2006.

[8] S. Dormido, F. Gordillo, S. Dormido-Canto, and J. Aracil, An inter-
active tool for introductory nonlinear control systems education, in:
Proceedings of the 17th IFAC World Congress, Barcelona, Spain,
2002.

[9] W. J. R. Hoefer and P. P. M. So, A time-domain virtual electromag-
netics laboratory for microwave engineering education, IEEE Trans
Microw Theory Tech 51 (2003), 1318–1325.

[10] J. P. Keller, Interactive control system design, Control Eng Pract 14
(2006), 177–183.

[11] M. Casini, D. Prattichizzo, and A. Vicino, The automatic control
Telelab: A user-friendly interface for distance learning, IEEE Trans
Educ 46 (2003), 252–257.

[12] C. C. Chan, R. Kwan, and S. F. Chan, Learning Control Systems
on the Web, In: Proceedings of the International Conference on
Computers in Education, 2002, Vol. 2|2, Vol. xliii+1580, pp 894–
895.

[13] J. A. Kypuros and T. J. Connolly, Student-configurable, web-
accessible virtual systems for system dynamics and controls courses,
Comput Appl Eng Educ 16 (2008), 92–104.

[14] S. Uran and K. Jezemik, Virtual laboratory for creative control design
experiments, IEEE Trans Educ 51 (2008), 69–75.

[15] J. A. Mendez, C. Lorenzo, L. Acosta, S. Torres, and E. Gonzalez, A
Web-based tool for control engineering teaching, Comput Appl Eng
Educ 14 (2006), 178–187.

[16] J. Sanchez, S. Dormido, R. Pastor, and F. Morilla, A Java/Matlab-
based environment for remote control system laboratories: Illustrated
with an inverted pendulum, IEEE Trans Educ 47 (2004), 321–
329.

[17] D. Buhler, W. Kuchlin, G. Gruler, and G. Nusser, The virtual automa-
tion lab—Web based teaching of automation engineering concepts, In
Proceeding from the 7th IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems, Edinburgh,
Scotland, 2000.

[18] Y. Zhu, B. Chen, and H. H. Cheng, An object-based software package
for interactive control system design and analysis, ASME J Comput
Inform Sci Eng 3 (2003), 366–371.

[19] H. H. Cheng, C for engineers and scientists: An interpretive approach,
McGraw-Hill, Inc., New York, 2009.

[20] H. H. Cheng, Ch: A C/C++ interpreter for script computing, C/C++
User’s J 24 (2006), 6–12.

[21] H. H. Cheng, Scientific computing in the Ch programming language,
Sci Program 2 (1993), 49–75.

[22] Q. Yu, B. Chen, and H. H. Cheng, Web-based control system design
and analysis, IEEE Control Syst Mag 24 (2004), 45–57.

BIOGRAPHIES

Bo Chen is an Assistant Professor in the Depart-
ment of Mechanical Engineering – Engineering
Mechanics and the Department of Electrical and
Computer Engineering, Michigan Technological
University, Houghton. Her research interests
include artificial immune systems and pattern
recognition, mobile agent and multi-agent
systems, sensor networks and networked embed-
ded systems, structural health monitoring, and
vehicle electronics and control networks. She

has published over 50 refereed journal and conference papers. Dr. Chen
received the Best Paper Award at the 2008 IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications.
She has been an active member of the ASME, and was Symposium
Chairs and Session Chairs for several international conferences. She is
a member of the Executive Committee of the Technical Committee on
Mechatronic and Embedded Systems and Applications (MESA), ASME
Design Engineering Division.

Harry H. Cheng is a professor in the Department
of Mechanical and Aerospace Engineering, and
Graduate Group in Computer Science at the Uni-
versity of California, Davis. He is also the Director
of the Integration Engineering Laboratory at UC
Davis. Before joining the faculty at UC Davis, he
worked as a Senior Engineer on robotic automa-
tion systems in the Research and Development
Division at United Parcel Service from 1989 to
1992. He is the founder of SoftIntegration, Inc. He

received the M.S. degree in mathematics in 1986 and the Ph.D. degree in
mechanical engineering in 1989 from the University of Illinois at Chicago.
His research is focused on computer-aided engineering, mobile agent-
based computing, intelligent mechatronic and embedded systems, robotics,
and innovative teaching. He has published over 160 papers in refereed
journals and conference proceedings and holds one U.S. patent. He is the

author of the book entitled “C for Engineers and Scientists: An Interpre-
tive Approach” published by McGraw-Hill in 2009. He is the original
designer and implementer of an embeddable C/C++ interpreter Ch for
cross-platform scripting. He participated in revision of the latest C standard
called C99 through ANSI X3J11 and ISO S22/WG14 C Standard Commit-
tees and made contributions to new C99 numerical features of complex
numbers, variable length arrays, and IEEE floating-point arithmetic, which
had been implemented in his C/C++ interpreter. He is a Fellow of ASME
and a Senior Member of IEEE. He served as the Conference Chair and Pro-
gram Chair of the IEEE/ASME International Conference on Mechatronic
and Embedded Systems and Applications.

Yu-Cheng Chou is an assistant professor in the
Department of Mechanical Engineering at Chung
Yuan Christian University, Taiwan. His research
interests include mobile agent-based computing,
autonomic computing, parallel computing, intel-
ligent mechatronics and embedded systems, and
software and system integration. Chou received
his master’s and PhD degrees in mechanical and
aeronautical engineering from the University of
California at Davis in 2007 and 2009, respec-

tively. He is a member of the IEEE and the ASME. Contact him at
ycchou@cycu.edu.tw.

