
54 This arTicle has been peer-reviewed. Computing in SCienCe & engineering

P e t a s c a l e
C o m p u t i n g

I n t e r p r e t i v e  P a r a l l e l  
C o m p u t i n g  i n  C

Ch MPI: Interpretive Parallel 
Computing in C
The message passing interface lets users develop portable message passing programs for 
parallel computing in C, C++, and Fortran. When combined with an MPI C/C++ library, 
Ch, an embeddable C/C++ interpreter for executing C/C++ programs interpretively, lets 
developers rapidly prototype MPI C/C++ programs without having to compile and link. 

T he message-passing interface defines 
a set of API functions that let us-
ers write high-performance parallel 
programs to exchange data between 

processes and complete tasks in parallel.1 The 
MPI standard was designed to support portability 
and platform independence. Therefore, an appli-
cation source code written with MPI is portable 
among different platforms. Traditionally, develop-
ers achieve high-performance parallel computing 
using a compiled language such as C or Fortran. 
However, a parallel scientific and engineering ap-
plication typically spends most of its time on a 
small amount of time-critical code. The rest of the 
code typically deals with memory management, 
error handling, I/O, user interaction, and parallel 
process startup. Given this and the need for rapid 
algorithm prototyping, the scientific community 
is increasingly using scripting languages. Develop-
ers can use such languages to rapidly implement, 
test, and debug parallel algorithms without need-
ing to recompile and link every time they make a 
modification. By avoiding the compile/link step, 

scripting languages help developers deal with the 
error-prone or high-level portions of parallel ap-
plications. Once the testing and debugging phases 
are completed, they can recode the parallel scripts 
in a compiled language—such as C or Fortran—
for optimized performance.

Researchers have created MPI bindings for 
several scripting languages, including MPI for 
Python,2,3 MatlabMPI,4 MPI Toolbox for Mat-
lab, MPI Toolbox for Octave, MPI Ruby,5 and 
Parallel::MPI for Perl. A language-MPI binding 
is an API that lets users develop MPI programs 
in that language. Therefore, these bindings offer 
all the benefits of a high-level scripting language 
within a parallel runtime environment. However, 
some of them have incomplete MPI functionality. 
Because scripting language syntax differs from C, 
C++, or Fortran, the potential conversion from 
scripting MPI programs to compiled MPI pro-
grams is complicated. Some scripting languages 
also require developers to purchase a license for 
each node to install the necessary software. Fur-
ther, despite scripting languages’ many benefits, 
researchers working on a computationally inten-
sive parallel application are most likely writing in 
C, C++, or Fortran. For people interested in learn-
ing parallel programming, C is also a good choice 
due to its broad use and international standard. 
The new numerical features in C99, the latest C 
standard, greatly improve the performance of C 
programs. Given these factors, it would be benefi-
cial to have a C-based scripting environment with 
MPI capabilities.
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Here, we introduce a generalized method for 
creating MPI bindings for Harry Cheng’s Ch 
(www.softintegration.com), an embeddable C/
C++ interpreter, based on different MPI imple-
mentations.6 We use the MPICH2 C library 
(www-unix.mcs.anl.gov/mpi/mpich2) as an ex-
ample to illustrate the creation of a Ch MPI pack-
age (http://iel.ucdavis.edu/projects/chmpi), which 
interfaces all of the library’s MPI functions. The 
Ch MPI website also contains a Ch binding for 
the local-area multicomputer/MPI (LAM/MPI) 
C library. Using our Ch MPI package, developers 
can treat a C MPI program as a Ch script and run it 
directly within the Ch environment across dif-
ferent platforms, without needing to compile and 
link the program to create platform-dependent 
executables.

ch: a c/c++ script computing environment
Ch is an embeddable C/C++ interpreter for cross-
platform scripting, shell programming, numerical 
computing, network computing, and embedded 
scripting.6 Ch is an extension and enhancement 
of the most popular Unix/Windows C computing 
environment. Because it’s platform independent, 
a Ch program developed on one platform can be 
executed on a different platform without recompil-
ing and linking. Ch supports all features of the ISO 
C90 standard. Many Ch features—such as complex 
numbers and variable-length array (VLA)—have 
been added to C99. Ch also supports computa-
tional arrays, as in Fortran 90 and MATLAB, for 
linear algebra and matrix computations (we offer an 
example later that uses Ch computational arrays to 
solve a simple matrix equation).

As a scripting environment, Ch allows for quick 
and easy application development and mainte-
nance. Developers can use it to glue together 
different modules and tools for rapid application 
prototyping. Ch users can directly invoke system 
utilities that would otherwise require many lines 
of code to implement. Once they’ve completed 
the rapid prototyping phase, developers can re-
place a Ch script’s commands and utilities with 
equivalent C code. The code can also be interpre-
tively run in Ch. This lets developers rapidly test 
applications before they’re compiled, thus saving 
development time and effort. Once the tests are 
complete, users can readily compile their code for 
optimized performance. As a C/C++ interpreter 
with a user-friendly integrated development envi-
ronment called ChIDE, Ch is especially suitable 
for teaching introductory computer program-
ming (http://iel.udavis.edu/cfores).7 Ch is also 
suitable for Web-based client-server computing. 

Ch programs can be used through a Common 
Gateway Interface (CGI) in a Web server for 
Web-based computing and through Mobile-C 
(www.mobilec.org), a mobile-agent platform, for 
mobile-agent based computing.

ch mpi
Our interfacing method applies to any C MPI 
implementation; here, we use the MPICH2 C 
library example to illustrate how to create a Ch 
MPI package for running an MPI program, or 
Ch script, in an interpretive environment.

interfacing with an mpi c library
Ch MPI is a Ch binding to the MPICH2 C library 
that makes all the MPICH2 C library functions 
callable from a Ch script. The Ch software devel-
opment kit (SDK) allows for porting the MPICH2 
C library into the Ch space by creating a Ch MPI 
package that binds to the MPICH2 C library. 
As Figure 1 shows, a Ch MPI package contains 
a Ch function library in the Ch space and a Ch 
dynamically loaded library in the C space. These 
two libraries provide wrapper functions that 
let us call MPICH2 C library functions from 
within the Ch space. For an MPICH2 C library 
function, a wrapper function consists of a chf
function from the Ch function library and a 
chdl C function from the Ch dynamically loaded 
library. We implement each chf function in a 
separate file with the .chf file extension. All 
the .chf files constitute the Ch function library. 
In contrast, we implement all chdl C functions in 
a C program that is compiled to generate the Ch 
dynamically loaded library, which is loaded when 
an MPI program executes.

Figure 1. Interfacing a Ch script with the MPICH2 C library. A Ch MPI 
package lets users call MPICH2 C library functions from within a Ch 
script.
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Figure 1 illustrates the underlying Ch MPI 
concept: an MPICH2 C library function, 
MPI_Init(), is called by a Ch script—that is, a 
C program with MPI function calls—in the Ch 
space. To invoke the C function MPI_Init(), Ch 
searches the Ch function library for the corre-
sponding Ch function MPI_Init() implemented 
in the file MPI_Init.chf and passes parameters 
to the function. The Ch function MPI_Init()
then searches through the Ch dynamically loaded 
library for the corresponding chdl C function, 
MPI_Init_chdl(), and passes parameters to it. 
The MPI_Init_chdl() function then invokes 
the function MPI_Init() in the MPICH2 C 
library. Any return values are passed back to the 
initial function call in the Ch space.

We can readily run a C MPI program in Ch 
by typing in the script’s name at a Ch shell’s 
command prompt. This lets us quickly modify 
program code and generate results without re-
compiling and linking the program. When a C 
MPI program is still under development, the er-
ror messages given by interpretively executing 
the program code in Ch are generally more in-
formative than the messages given by compiling 
the program using conventional C compilers. For 
example, this occurs in situations where an MPI 
program contains syntax errors or accesses ele-
ments beyond an array’s extent.

The key components of a Ch MPI pack-
age include the header file mpi.h, chf func-
tions, and chdl C functions. To illustrate them, 
we’ll use the header file mpi.h, the chf func-
tion MPI_Init(), and the chdl C function 

MPI_Init_chdl().

header file. The header file mpi.h is included at 
the beginning of every C MPI program. This 
header file is the same as the one in the MPICH2 
C library, with the addition of several statements. 
The macro LOAD_CHDL(mpi) invokes a function 
named dlopen() that loads the Ch dynami-
cally loaded library libmpi.dl into the Ch in-
terpretive environment. The function dlopen()
returns a handle _Chmpi_handle, which is 
used in subsequent calls to functions dlsym()
and dlclose(). The same macro invokes the 
function dlclose() to release the dynamically 
loaded library libmpi.dl from the Ch interpre-
tive environment when a C MPI program execu-
tion completes.

The chf ch function. As Figure 2 shows, the chf 
function MPI_Init() is implemented in the 
file MPI_Init.chf. The function call fptr = 

dlsym(_Chmpi_handle, “MPI_Init_chdl”)

returns the address of the symbol MPI_Init_
chdl inside the dynamically loaded library libmpi.
dl pointed to by the handle _Chmpi_handle.
The function call dlrunfun(fptr, &retval, 

MPI_Init, argc, argv) runs the chdl C func-
tion MPI_Init_chdl() found in the dynamically 
loaded library libmpi.dl through the address 
pointed to by the pointer fptr. The second pa-
rameter is the address of a variable retval con-
taining the return value of the chdl C function 
MPI_Init_chdl(). Because, in this case, the 
third parameter, MPI_Init, is the name of the 
chf function itself, the number and types of 
the remaining parameters are first examined ac-
cording to the function prototype of MPI_Init(). 

Figure 2. The chf function MPI_Init() is implemented as a separate function file, MPI_Init.chf, in 
a Ch MPI package. Such function files constitute the Ch function library of a Ch MPI package. The chf 
function MPI_Init() calls the chdl C function MPI_Init_chdl().

#ifdef _CH_ 
#pragma package <chmpi> 
#include <chdl.h> 
LOAD_CHDL(mpi); 
#endif 

int MPI_Init(int *argc, char ***argv) { 
 void *fptr; 
 int retval; 

 fptr = dlsym(_Chmpi_handle, "MPI_Init_chdl"); 
 if(fptr == NULL) { 
  fprintf(_stderr, "Error: %s(): dlsym(): %s\n", __func__, dlerror());
  return -1; 
 } 
 dlrunfun(fptr, &retval, MPI_Init, argc, argv); 
 return retval; 
} 
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The last two parameters, argc and argv, are then 
passed to the chdl C function MPI_Init_chdl()
if the examination succeeds.

The chdl c function. Figure 3 shows the chdl C 
function MPI_Init_chdl(). Even though the 
chf function MPI_Init() passes two parameters 
to the chdl C function MPI_Init_chdl(), the 
latter function still only takes one parameter, 
varg, which is a void pointer to the parameter 
list. The function call Ch_VaStart(interp, 
ap, varg) obtains interp, an instance for the 
Ch interpreter, and initializes ap, an object for the 
parameter list. These two parameters will be used 
in subsequent calls to functions Ch_VaArg() and 
Ch_VaEnd(). The two consecutive calls to the 
function Ch_VaArg() save the values passed from 
the chf function MPI_Init() in the two param-
eters argc and argv, respectively. The function 
call retval = MPI_Init(argc, argv) invokes 
the function MPI_Init() in the MPICH2 C 
library and saves the return value in the variable 
retval. The function call Ch_VaEnd(interp, 
ap) releases the memory associated with the in-
stance interp and object ap.

executing an mpi program 
across Different platforms
To illustrate how a Ch MPI package allows 
for interpretive parallel computation, we use an 
MPI program, cpi.c,8 for calculating π (see 
Figure 4). With a Ch MPI package, we can ex-
ecute the cpi.c program in Ch as is, without 
any modification. The program repeatedly asks 
users to input the number of intervals to cal-
culate π and exits when the input value is 0. As 
Figure 4 shows, the cpi.c program is based on 
the equation
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+

=∫∫
4

1 2
0
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π .

Figure 5 shows an example of the numerical in-
tegration in the cpi.c program (Figure 4). In this 
case, we use two processes, P0 and P1, to compute 
π with four intervals between 0 and 1. The approxi-
mate value of π is the summation of four rectangles’ 
areas. Each rectangle has the same base h= 0.25. As 
Figure 5 shows, we obtain each rectangle’s height 
as the value of f(x), with x equal to the base’s middle 
point. Also, each process computes the area of every 
other rectangle. Increasing the number of intervals 
between 0 and 1 improves the π value’s precision, 
but magnifies the processes’ workload.

After a few variable declarations, the cpi.c
program calls the function MPI_Init() to 
initialize the MPI environment. The function 
MPI_Init() is required in every MPI pro-
gram and must be the first MPI function called. 
The function call MPI_Comm_size() saves 
the number of processes the user has started 
in the parameter numprocs. The function call 
MPI_Comm_rank() saves the rank of a process in 
the parameter myid. In the MPI, a communica-
tor encompasses a group of processes that can 
communicate with each other. All MPI mes-
sages must specify a communicator. Here, the 
cpi.c program uses the default communicator 
MPI_COMM_WORLD, which contains all processes. 
Next, the user inputs the value of n (the number 
of intervals) to the master process, whose myid 
is 0. The function call MPI_Bcast() sends the n 
value from the master process to all the worker 
processes, whose myid is not 0. After the func-
tion call MPI_Bcast(), all processes have n
and their own myid, which is enough informa-
tion for each process to compute its mypi. Each 
process does this by calculating the total area 
for a certain number of rectangles, whose or-
dinal numbers begin with myid+1 and increase 
by numprocs. Next, the function call MPI_
Reduce() sums up all mypis from all pro-
cesses. The result is saved in the variable pi of 
the master process. All processes then return to 
the top of the loop, except for the master pro-
cess, which first prints the results. When the 
user types “0” in response to the interval number 
request, the loop terminates and all processes 
call the function MPI_Finalize(), which ter-
minates the MPI environment.

Figure 3. The chdl C function MPI_Init_chdl() in a Ch MPI 
package. Such chdl C functions are implemented in one single file 
that is compiled to generate the Ch dynamically loaded library of a 
Ch MPI package. The chdl C function MPI_Init_chdl() calls the 
function MPI_Init() in the MPICH2 C library.

EXPORTCH int MPI_Init_chdl(void *varg) { 
 ChInterp_t interp; 
 ChVaList_t ap; 
 int *argc;
 char ***argv; 
 int retval; 

 Ch_VaStart(interp, ap, varg); 
 argc = Ch_VaArg(interp, ap, int *); 
 argv = Ch_VaArg(interp, ap, char ***);
 retval = MPI_Init(argc, argv); 
 Ch_VaEnd(interp, ap); 
 return retval; 
} 
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Figure 6 shows the cpi.c script execution se-
quence in Ch using the MPICH2-based Ch MPI 
package in an environment with two different 
platforms—Linux and Windows—which both 
contain the script cpi.c. MPICH2 provides 
the super multipurpose daemon (SMPD), which 
supports an MPI program’s execution on a com-
bination of Linux and Windows platforms. The 
sequence in Figure 6 includes four steps:

The user starts the SMPDs on both machines. •	
The user runs the •	 mpiexec program to send 
the execution message (mpiexec command line 
arguments) to the local SMPD. 
The local SMPD distributes the message to the •	
remote SMPD.
According to the received execution message, •	
each SMPD launches a Ch interpreter to exe-
cute the specified C MPI script, cpi.c, through 
the Ch MPI package.

Figure 7 shows the master process output from 
executing cpi.c on both Linux (phoenix) and 
Windows (mouse1) platforms. The master process 
is on the local phoenix machine. The machines 
argument in Figures 6 and 7 is an MPICH2 host 
file used to specify the information for all the ma-
chines contributing to the parallel computation. 
Likewise, the password argument (also shown in 
both figures) is a password file used to specify a 
username and password. Each machine invokes 
a Ch interpreter by placing ch as the execut-
able in the mpiexec command line. The -u is a 
ch option that unbuffers the standard output 
stream, which is line buffered by default. When 
line buffered, the system waits for a new line char-
acter before writing the buffer contents onto the 
terminal screen. Using the -u option can prevent 
the cpi.c execution from halting.

performance evaluation of ch mpi
Here, we present results from comparing C MPI’s 
bandwidth and latency with those of Ch MPI. 
We also show execution performance for Ch MPI 
and MatlabMPI using programs for parallel and 
serial calculation of π, and for C MPI and Ch MPI 
using a program for 2D matrix multiplication.

performance evaluation setup
Our 64-Bit Linux cluster contains 10 nodes, 
each with 8 Gbytes of RAM and eight quad-core 
AMD Opteron processors running at 1.8 GHz. 
All nodes are connected through a switch with a 
1 Gigabit/sec transmission rate. The heterogeneous 
network cluster contains Linux and Windows 

Figure 5. The cpi.c program’s principle for 
computing π with multiple processes. Here, the 
approximate value of π is the summation of four 
rectangles’ areas calculated by two processes.
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Figure 4. The cpi.c program for the parallel computation of π.  
The program repeatedly asks users to input the number of intervals  
to calculate π, and exits when the input value is 0.

/************************************************
* File: cpi.c 
* Purpose: Parallel computation of pi with the 
*  number of intervals from standard input.
************************************************/
#include <mpi.h> 
#include <stdio.h> 
#include <math.h> 

int main(int argc, char *argv[]) {
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numproces);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 while(1) {
   if(myid == 0) {
     printf("Enter the number of intervals: 
    (0 quits) ");
     scanf("%d", &n);
   } 
   MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
   if(n == 0) {  // program quits if the interval
              // is 0
     break;
   }
   else { 
     h = 1.0 / (double)n; 
     sum = 0.0; 
     for(i=myid+1; i<=n; i+=numproces) {
   x = h * ((double)i – 0.5); 
   sum += (4.0 / (1.0 + x*x)); 

   }
   mypi = h * sum; 
   MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM,
     0, MPI_COMM_WORLD); 
   if(myid == 0) { 
  printf("PI is %.16f,  Error is %.16f\n",
              pi, fabs(pi - PI25DT));
   } 
  }
 }
 MPI_Finalize(); 
 return 0; 
} 
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machines. Each machine has an Intel Pentium 4 
processor running at 3.2 GHz and 512 Mbytes of 
RAM. All of the machines are connected through 
a switch with a 100 Megabit/sec transmission rate.

We also use two homogeneous network clus-
ters: one consists of only Linux machines, and the 
other of only Windows machines. Each machine 
in both clusters has one Intel Pentium 4 processor 
running at 3.2 GHz and 512 Mbytes of RAM. All 
of the machines are connected through a switch 
with a 100 Megabit/sec transmission rate.

Bandwidth and latency Benchmark
We benchmarked and compared Ch MPI to 
a native C MPI implementation, MPICH2, 

in terms of bandwidth and latency. Hardware 
setups for the benchmark were as follows (the 
letters correspond to the results in Figures 8 
and 9):

two nodes from the 64-bit Linux cluster, using •	
one processor from each node (a);
one node from the 64-bit Linux cluster, using •	
two of the node’s processors (b); 
one Linux machine and one Windows machine •	
from the heterogeneous network cluster (c); 
two Linux machines from the homogeneous •	
Linux network cluster (d); and 
two Windows machines from the homogeneous •	
Windows network cluster (e). 

Figure 6. Executing cpi.c across Linux and Windows platforms in Ch using the MPICH2-based Ch MPI package. Each 
SMPD launches a Ch interpreter to run cpi.c to calculate a partial π. Through Ch and Ch MPI, we can perform parallel 
computation across heterogeneous platforms with identical Ch scripts.
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Figure 7. The master process output when executing cpi.c on Linux (phoenix) and Windows (mouse1) 
platforms. The master process is on the local phoenix machine, while the worker process is on the remote 
mouse1 machine.
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We obtained the benchmark programs running 
in both Ch MPI and native C MPI from Ohio 
State University’s Mvapich project (that is, an 
MPI implementation over the InfiniBand VAPI 

interface based on the MPICH implementation; 
see http://mvapich.cse.ohio-state.edu); they’re also 
available on our own Web site (http://iel.ucdavis.
edu/projects/chmpi). Both tests included the use 

Figure 8. Bandwidth test results for C MPI and Ch MPI in semi-log plots. The hardware setups were (a) a 64-bit Linux cluster 
with two processors and two nodes, (b) a 64-bit Linux cluster with two processors and one node, (c) a heterogeneous 
network cluster, (d) a Linux network cluster, and (e) a Windows network cluster.
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of a sender and receiver process, running on sepa-
rate processors.

bandwidth testing. In this test, we calculated band-
widths for different message sizes. For each mes-
sage size, the sender process consecutively sent 
out a fi xed number of messages of that size to the 
receiver process and waited for the receiver pro-
cess to reply, which it would do only after receiv-
ing all of the messages. This procedure repeated 
for several iterations; we then calculated the band-
width for each message size. We based the calcu-
lation on the number of bytes sent by the sender 
process and the elapsed time between when the 
sender process sent out the fi rst message and when 
it received the reply from the receiver process. We 
used nonblocking MPI functions, MPI_Isend()
and MPI_Irecv(), in the bandwidth test. 

Figure 8 shows the bandwidth test results of C 
MPI and Ch MPI, with the x-axis on a base-10 
logarithmic scale. Ch MPI’s bandwidth is com-
parable to that of C MPI for cases (a) and (b) in 
the 64-bit Linux cluster setup. Ch MPI’s band-
width is very close to that of C MPI for cases 
(c) through (e) on the heterogeneous and homog-
enous network cluster setups in both Linux and 
Windows.

latency testing. In this test, we calculated latencies 
with respect to different message sizes. For each 
message size, the sender process sent out one mes-
sage of that size to the receiver process and waited 
for the receiver process to reply. The receiver pro-
cess received the sender’s message and sent back 
a reply of the same message size. This procedure 
repeated for several iterations; we then calcu-
lated the average one-way latency regarding that 
message size. We used blocking MPI functions, 
MPISend() and MPIRecv(), in the latency test. 

Figure 9 shows the latency test results for C 
MPI and Ch MPI with both the x- and y-axis 
on a base-10 logarithmic scale. Ch MPI’s latency 
is comparable to that of C MPI for cases (a) and 
(b) in the 64-bit Linux cluster setups. Ch MPI’s 
latency is very close to that of C MPI for cases 
(c) through (e) on the heterogeneous and homo-
geneous network cluster setups in both Linux and 
Windows.

parallelized execution performance testing
We ran a parallelized execution performance 
comparison between Ch MPI and MatlabMPI for 
the π calculation and an execution performance 
comparison between C MPI and Ch MPI for 2D 
matrix multiplication.

calculating π. For this test, we used three ma-
chines from the Windows network cluster. We 
fi rst evaluated the serial performances for non-
MPI programs, cpi_serial.c, cpi_serial.m, 
and the compiled executable of cpi_serial.
c–cpi_serial.exe. The serial performance 
provides execution times for the for-loop to 
calculate π with different intervals using a single 
processor. In Table 1, n represents the number 
of intervals. As Table 1 shows, the interpretive 
execution performance in Ch is approximately 
2.35 times faster than Matlab in the serial per-
formance test. Meanwhile, the execution of the 
compiled executable is approximately 154 times 
faster than the same C source code’s interpretive 
execution.

To compare parallel execution performance, 
we used the programs cpi_parallel.c, 
cpi_parallel.m, and the compiled executable 
of cpi_parallel.c–cpi_parallel.exe. To 
create the program cpi_parallel.c, we slightly 
modifi ed cpi.c in Figure 4 such that each pro-
cess sums up the areas of consecutive rectangles 
instead of spaced rectangles. The program cpi_
parallel.m is a Matlab program corresponding 
to cpi_parallel.c. MatlabMPI provides the 
MPI functions used in cpi_parallel.m.4 In both 
programs, we set n to 4,800,000. We obtained the 
start time before all the processes began their com-
putation, and the end time after the root process 
collected partial values from all other processes 
to obtain the fi nal value of π. The execution time 
is the interval between the start and end times. 
Because the MPI function MPI _Wtime() is not 
supported in MatlabMPI, we used Matlab func-
tions tic and toc to obtain the execution time 
in cpi_parallel.m. To have a fair time evalu-
ation against MatlabMPI, we used the equivalent 
standard C function clock() to get the execution 
time for running cpi_parallel.c. As Table 2 
shows, the interpretive execution performance in 
Ch is approximately 2.35 times faster than Matlab 
in the parallel performance test. Meanwhile, the 
execution of the compiled executable is approxi-
mately 154 times faster than the same C source 
code’s interpretive execution.

table 1. execution times of non-mpi codes in a single processor.

execution time (s)

n cpi_serial.exe cpi_serial.c cpi_serial.m

4,800,000 0.0588 9.103 21.581

2,400,000 0.0295 4.55 10.772

1,600,000 0.0196 3.037 7.15
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Figure 9. C MPI and Ch MPI latency test results in log-log plots. As in previous tests, the hardware setups were (a) a 64-bit 
Linux cluster with two processors and two nodes, (b) a 64-bit Linux cluster with two processors and one node,  
(c) a heterogeneous network cluster, (d) a Linux network cluster, and (e) a Windows network cluster. 
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As Tables 1 and 2 show, the programs 
spend most of their time on the for-loop that 
calculates π. As expected, executing the compiled 
executable is signifi cantly faster than the cor-
responding interpretive execution of the same C 
source code or Matlab script. All methods scale 
linearly with the number of processors.

For a program that mainly performs the com-
putation by an iteration statement, such as the 
for-loop that calculates π, it’s signifi cantly slow-
er to run the program source code through an 
interpreter than a compiled executable. However, 
we can use Ch SDK to make binary functions, for 
some commonly used iteration statements, callable 
in a Ch script; with binary functions being called 
from the source code to perform time-consuming 
iterative calculations, the source code’s execution 
performance can be comparable to that of a com-
piled executable.

2d matrix multiplication. A matrix multiplica-
tion for-loop performs time-consuming cal-
culations. As an example, we used the program 
mm_parallel.c and its compiled executable 
mm_parallel to perform the second parallel ex-
ecution test for matrix multiplication on the 64-bit 
Linux cluster, where each of the cluster’s processors 
runs one process. We created a library, libmxm.a, 
together with a header fi le, mxm.h, to provide a 
function, matrixmultiply(), which performs 
2D matrix multiplication. We generated the com-
piled executable mm_parallel with libmxm.a. 
Using Ch SDK, we created a Ch dynamically 
loaded library, libmxm.dl, and a Ch function 
fi le, matrixmultiply.chf, to make the function 
matrixmultiply() callable from within the Ch 
script mm_parallel.c.

We set the sizes of matrices A, B, and C in mm_
parallel.c to 2,880 × 2,000, 2,000 × 450, and 
2,880 × 450, respectively. In this test, the mas-
ter process didn’t contribute to the computation, 
and we accounted only for the time spent by each 
worker process to complete its own computation. 
We determined the execution time by fi nding the 
maximum time among all the times spent by work-
er processes to fi nish the matrix multiplication 

function call. The MPI function, MPI_Wtime(), 
was called to obtain the time in seconds.

Figure 10 shows the execution times and 
Figure 11 shows the execution speedups from 
running these two programs with different num-
bers of processors. The number of processors in 
Figures 7 and 8 refers to the number of worker 
processes that contributed to the computa-
tion. As Figure 10 shows, the execution times of 

Figure 10. Execution times of mm_parallel 
and mm_parallel.c. Execution times of mm_
parallel.c are almost the same as those of 
mm_parallel. 
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Figure 11. Execution speedups of mm_parallel 
and mm_parallel.c. Ch MPI scales linearly, with 
almost the same rate as C MPI.
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table 2. execution performances of mpi codes.

# of processors
(n = 4,800,000)

cpi_parallel.exe cpi_parallel.c cpi_parallel.m

execution time (s) speedup execution time (s) speedup execution time (s) speedup

1 0.0598 1 9.206 1 21.597 1

2 0.03 1.993 4.609 1.997 10.85 1.991

3 0.02 2.99 3.068 3 7.25 2.979
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mm_parallel.c are almost identical to those of 
mm_parallel. Figure 11 shows that Ch MPI scales 
linearly, with almost the same rate as C MPI.

Because the function matrixmultiply() 

was called only once by each worker process, the 
mm_parallel.c’s execution times are almost 
identical to those of mm_parallel. As we not-
ed earlier, if such a binary function is repeat-
edly called, a source code’s execution time won’t 
be comparable to that of a compiled executable. 
However, Ch MPI saves user development effort 
because it doesn’t compile and link a program ev-
ery time a change is made.

We can use Ch computational arrays to carry 
out matrix computation for applications that don’t 
need to compile an MPI program for performance 
reasons with respect to other parts of the pro-
gram. The program in Figure 12 shows how to 
use Ch computational arrays to solve the equation 
Ax = b, given that

A =





















8 1 6
3 5 7
4 9 2

and b=





















1
2
3

.

The header file array.h must be in-
cluded to utilize Ch computational arrays. As 
Figure 12 shows, the program’s header file 
numeric.h contains the header file array.h 
and the function prototype of the function in-
verse() for computing the inverse of a matrix. 
Matrix A and vectors b and x are declared as Ch 
computational arrays of type array double. 
We obtain the solution vector x simply through 

the statement x = inverse(A)*b. The pro-
gram’s output is

x =

 0.05

 0.30

 0.05

With Ch computational arrays, we can specify 
vector and matrix operations in a C source code as 
scalar operations, as Figure 12 shows. In addition, 
declaring a matrix as a Ch computational array is 
straightforward regardless of the matrix’s size. 

applications
We now describe two example Ch MPI applica-
tions. The first involves task farming with existing 
precompiled executables and the second involves 
Web-based parallel computing in a heterogeneous 
environment.

task Farming with ch mpi
Task farming is a technique used to achieve high 
throughput of serial tasks on parallel computers. 
MPI is a suitable approach for implementing task 
farm programs that benefit from parallel comput-
ing.9 A task farm program essentially consists of 
a master section and a worker section. When the 
task farm program is running in a parallel environ-
ment, a single master process and several worker 
processes are launched to perform whatever is de-
fined in the program’s master and worker sections. 
Each process runs on a different processor.

In general, the master process receives requests 
from worker processes for tasks and sends tasks 
to worker processes until all tasks have been fin-
ished; it then notifies worker processes to quit. 
Until notified to quit, worker processes continu-
ously request and execute new tasks from the 
master process. In the task farm paradigm, tasks 
are independent of each other and usually repre-
sent an intensive computation to be performed 
on a worker processor. Therefore, executing in-
dependent tasks usually means calling/running a 
common precompiled function/executable with 
different inputs.

Some task farm programs are for applications 
that must run an existing precompiled execut-
able over a set of parameters to generate a set of 
results—such as in parameter searching or ensem-
ble studies. Such programs are mainly composed 
only of functions dealing with message transfer 
between the master and worker processes. In addi-
tion, the master part of those task farm programs 
can also change the conventional first-come, 

Figure 12. Using Ch computational arrays to solve 
the equation Ax = b. With Ch computational 
arrays, we can specify matrix operations as scalar 
operations.

#include <stdio.h> 
#include <numeric.h> 

int main() 
{ 
 array double A[3][3] = {8,1,6,

7,,5,3
;}2,9,4

 array double b[3][1] = {1,2,3};
 array double x[3][1]; 

 x = inverse(A)*b; 
 printf("x =\n%7.2f", x); 

 return 0; 
} 
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first-serve strategy by adopting different algo-
rithms to coordinate the task distribution among 
worker processes for different concerns. In some 
cases, for example, the master process can specify 
the number of tasks sent to a particular worker pro-
cess each time or limit the total amount of tasks 
performed by certain worker processes. Ch MPI can 
effectively facilitate the design of such a task farm 
program because a user can change the program and 
readily test it without the compilation process.

As an example, a simple MPI task farm program 
task_farm.c can run on different numbers of 
processors to handle a total of 64 identical tasks 
on our Linux cluster. The tasks are saved in an 
input file, tasks, for the task farm program. 
Each task consists of consecutive commands cd 
output; ../nbody 1000 > out_1. Thus, each 
task stands for changing to a subdirectory, output, 
running an executable, nbody, from the parent di-
rectory with a command line argument, 1000, and 
redirecting the executable’s output to a file, out_1. 
All the commands for one task should be separated 
by semicolons and on the same line. Because each 
task is identical, a linear execution speedup is ex-
pected as the number of processors increases.

The nbody executable performs a simplified 
N-body simulation10 associated with a 1D line 
of N particles. The number of particles is speci-
fied as a command line argument. Each particle 
has an initial position on the x-axis. Evaluating 
a particle’s position depends on all the forces 
exerted on this particle from all other particles. 
A force exerted on a particle from another particle 
is proportional to the inverse of the square of the 
distance between these two particles. Forces on 
a given particle from any particles on its left side 
have a negative value because they’re pulling the 
particle in the negative x direction; forces from 
any particles on its right side have a positive value. 
The program eventually outputs the average dis-
tance between two adjacent particles.

The execution time in task_farm.c is the time 
required to finish all 64 tasks. Figure 13 shows ex-
ecution speedups for different numbers of proces-
sors running task_farm.c; a linear speedup is 
obtained as the number of processors increases.

With Ch MPI, users can readily run a task 
farm program such as task_farm.c on multiple 
processors without compilation to decrease task-
completion time.

Web-Based application of ch mpi
for parallel computing
The CGI is a standard for interfacing external 
applications with Web servers. A Web server 

can execute a CGI program to run external 
applications and output dynamic results. Al-
though developers can write a CGI program 
in any language, using scripting languages 
makes it easier to debug, modify, and maintain. 
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Figure 13. Execution speedups for different 
numbers of processors running task_farm.c 
to finish 64 identical tasks. A linear speedup is 
obtained as the number of processors increases.

Figure 14. A Ch CGI script performs multiple tasks 
on the Web server in the Web-based parallel 
computing application. It collects information 
from an HTML document, retrieves an uploaded 
MPI program or archived file, creates an MPICH2 
host file and other Ch scripts, and invokes Ch 
interpreters to run those scripts.
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Ch is suitable for Web-based applications due to 
its interpretive nature. Like Java Server Page and 
Active Server Page, the Ch CGI Toolkit provides 
four easy-to-use classes for CGI programming in 
Ch: CResponse, CRequest, CServer, and CCookie. 
We’ve developed many Web-based applications—
such as a Web-based system for control system 
design and analysis—using the Ch CGI Toolkit.

In our example case here, we use the Apache 
HTTP server as the Web server for our parallel 
computing system. Users’ requests are sent to the 
Web server as HTML documents. The comput-
ing resources consist of our Linux and Windows 
network clusters.

As Figure 14 shows, a Ch CGI script 
in the Web server performs multiple tasks. 
First, the Ch CGI script parses an HTML doc-
ument to collect useful information. Next, it 
retrieves from the collected information an up-
loaded MPI program or archived file, generates 
an MPICH2 host file, and further creates several 
Ch scripts. Finally, the Ch CGI script invokes 
Ch interpreters to run the created Ch scripts. 
Each created Ch script performs one of the fol-
lowing tasks:

distribute the MPI program or archived file •	
to the machines specified in the generated 
MPICH2 host file; 
start the SMPDs;•	
extract files from the archived file if needed;•	
execute the MPI program on the specified •	
hosts; 
remove the uploaded file, and extracted files if •	
any, from the specified hosts; and 
terminate the SMPDs.•	

Figure 15 shows our Web-based parallel com-
puting system’s user interface. Users can select 
the computing resources to use and upload a C 
MPI program source code for execution. For 
some specific MPI programs, such as compu-
tational fluid dynamics simulations, extra files 
like a grid file and an initial condition file are 
required. In such cases, a user can upload an 
archived file that contains a C MPI program 
source code along with all the necessary files 
through the user interface. Figure 16 shows 
the results from running mm_parallel.c on 
four computers with small matrices through the 
Web-based parallel computing application. The 
sizes of the matrices A, B, and C are 12 × 15, 
15 × 7, and 12 × 7, respectively.

A Ch MPI package lets developers 
run identical MPI C scripts across 
heterogeneous platforms. Inter-
pretive computing in Ch MPI is 

efficient in comparison with other scripting 
solutions, running more than twice as fast as 
both Matlab (for sequential π calculation) and 
MatlabMPI (for parallel π calculation). Also, 

Figure. 15. The user interface of the Web-based parallel computing 
application. Through the user interface, a user can select the 
computing resources, upload an MPI program source code or an 
archived file, and view the execution results.

Figure 16. Results from running mm_parallel.c through the Web-
based parallel computing application. The resultant matrix is obtained 
by parallel 2D matrix multiplication on four computers.
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using Mobile-C (www.mobilec.org), users can 
dynamically generate, deploy, and execute C 
programs written with Ch MPI across different 
platforms in a network. Such dynamic parallel 
computing has great potential for many challeng-
ing applications such as data mining, autonomic 
parallel computing, grid computing, and cloud 
computing.

All of the codes we described in this article 
are available on the Ch MPI Web site (http://iel.
ucdavis.edu/projects/chmpi).

references
M. Snir et al., 1. MPI: The Complete Reference—The MPI 

Core, 2nd ed., MIT Press, 1998.

L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” 2.

J. Parallel and Distributed Computing, vol. 65, no. 9, 

2005, pp. 1108–1115.

L. Dalcin et al., “MPI for Python: Performance 3.

Improvements and MPI-2 Extensions,” J. Parallel 

and Distributed Computing, vol. 68, no. 5, 2008, 

pp. 655–662.

K. Jeremy and S. Ahalt, “MatlabMPI,” 4. J. Parallel 

and Distributed Computing, vol. 64, no. 8, 2004, 

pp. 997–1005.

E. Ong, “MPI Ruby: Scripting in a Parallel Environ-5.

ment,” Computing in Science & Eng., vol. 4, no. 4, 

2002, pp. 78–82.

H.H. Cheng, “Scientific Computing in the Ch 6.

Programming Language,” Scientific Programming, 

vol. 2, no. 3, 1993, pp. 49–75.

H.H. Cheng, 7. C for Engineers and Scientists: An 

Interpretive Approach, McGraw-Hill, 2009.

W. Gropp, E. Lusk, and A. Skjellum, 8. Using MPI: 

Portable Parallel Programming with Message Passing 

Interface, 2nd ed., MIT Press, 1999.

P. Marques, “Task Farming and the Message Passing 9.

Interface,” Dr. Dobb’s J., vol. 28, no. 9, 2003, 

pp. 32–37.

S.J. Aarseth, 10. Gravitational N-Body Simulations: Tools 

and Algorithms, Cambridge Univ. Press, 2003.

Yu-cheng chou is an assistant professor in the De-
partment of Mechanical Engineering at Chung Yuan 
Christian University, Taiwan. His research interests 
include mobile agent-based computing, autonomic 
computing, parallel computing, intelligent mecha-
tronics and embedded systems, and software and 
system integration. Chou has a PhD in mechanical 
and aeronautical engineering from the University of 
California at Davis. He is a member of the IEEE and  
the ASME. Contact him at ycchou@cycu.edu.tw.

stephen s. nestinger is an assistant professor in me-
chanical engineering at the Worcester Polytechnic 

Institute. His research interests include cooperative  
multirobot systems, robotics, space robotics,  
vision systems, control systems, mechatronics, real-
time systems, software and systems integration, 
and mobile agent systems. Nestinger has a PhD  
in mechanical and aeronautical engineering from 
the University of California at Davis. He is a mem-
ber of the IEEE and the ASME. Contact him at 
ssnestinger@wpi.edu.

harry h. cheng is a professor in the Department 
of Mechanical and Aerospace Engineering and the 
Graduate Group in Computer Science at the Univer-
sity of California, Davis, where he directs the Inte-
gration Engineering Laboratory. He is the founder 
of SoftIntegration, Inc., and the original designer 
and implementer of an embeddable C/C++ inter-
preter Ch for cross-platform scripting. His research 
is focused on computer-aided engineering, mobile-
agent-based computing, intelligent mechatronic 
and embedded systems, and innovative teaching. 
He is author of C for Engineers and Scientists: 
An Interpretive Approach (McGraw-Hill, 2009). 
Cheng has a PhD in mechanical engineering from 
the University of Illinois at Chicago. He is a fellow of 
the ASME and a senior member of the IEEE. Contact 
him at hhcheng@ucdavis.edu.

Selected articles and columns from IEEE Computer 
Society publications are also available for free at 

http://ComputingNow.computer.org.

CISE-12-2-Cheng.indd   67 2/9/10   9:14:06 AM




