
54 This arTicle has been peer-reviewed. Computing in SCienCe & engineering

P e t a s c a l e
C o m p u t i n g

I n t e r p r e t i v e P a r a l l e l
C o m p u t i n g i n C

Ch MPI: Interpretive Parallel
Computing in C
The message passing interface lets users develop portable message passing programs for
parallel computing in C, C++, and Fortran. When combined with an MPI C/C++ library,
Ch, an embeddable C/C++ interpreter for executing C/C++ programs interpretively, lets
developers rapidly prototype MPI C/C++ programs without having to compile and link.

T he message-passing interface defines
a set of API functions that let us-
ers write high-performance parallel
programs to exchange data between

processes and complete tasks in parallel.1 The
MPI standard was designed to support portability
and platform independence. Therefore, an appli-
cation source code written with MPI is portable
among different platforms. Traditionally, develop-
ers achieve high-performance parallel computing
using a compiled language such as C or Fortran.
However, a parallel scientific and engineering ap-
plication typically spends most of its time on a
small amount of time-critical code. The rest of the
code typically deals with memory management,
error handling, I/O, user interaction, and parallel
process startup. Given this and the need for rapid
algorithm prototyping, the scientific community
is increasingly using scripting languages. Develop-
ers can use such languages to rapidly implement,
test, and debug parallel algorithms without need-
ing to recompile and link every time they make a
modification. By avoiding the compile/link step,

scripting languages help developers deal with the
error-prone or high-level portions of parallel ap-
plications. Once the testing and debugging phases
are completed, they can recode the parallel scripts
in a compiled language—such as C or Fortran—
for optimized performance.

Researchers have created MPI bindings for
several scripting languages, including MPI for
Python,2,3 MatlabMPI,4 MPI Toolbox for Mat-
lab, MPI Toolbox for Octave, MPI Ruby,5 and
Parallel::MPI for Perl. A language-MPI binding
is an API that lets users develop MPI programs
in that language. Therefore, these bindings offer
all the benefits of a high-level scripting language
within a parallel runtime environment. However,
some of them have incomplete MPI functionality.
Because scripting language syntax differs from C,
C++, or Fortran, the potential conversion from
scripting MPI programs to compiled MPI pro-
grams is complicated. Some scripting languages
also require developers to purchase a license for
each node to install the necessary software. Fur-
ther, despite scripting languages’ many benefits,
researchers working on a computationally inten-
sive parallel application are most likely writing in
C, C++, or Fortran. For people interested in learn-
ing parallel programming, C is also a good choice
due to its broad use and international standard.
The new numerical features in C99, the latest C
standard, greatly improve the performance of C
programs. Given these factors, it would be benefi-
cial to have a C-based scripting environment with
MPI capabilities.

1521-9615/10/$26.00 © 2010 ieee

CopubliShed by the ieee CS and the aip

Yu-Cheng Chou
Chung Yuan Christian University, Taiwan
Stephen S. Nestinger
Worcester Polytechnic Institute
Harry H. Cheng
University of California, Davis

CISE-12-2-Cheng.indd 54 2/9/10 9:13:40 AM

marCh/april 2010 55

Here, we introduce a generalized method for
creating MPI bindings for Harry Cheng’s Ch
(www.softintegration.com), an embeddable C/
C++ interpreter, based on different MPI imple-
mentations.6 We use the MPICH2 C library
(www-unix.mcs.anl.gov/mpi/mpich2) as an ex-
ample to illustrate the creation of a Ch MPI pack-
age (http://iel.ucdavis.edu/projects/chmpi), which
interfaces all of the library’s MPI functions. The
Ch MPI website also contains a Ch binding for
the local-area multicomputer/MPI (LAM/MPI)
C library. Using our Ch MPI package, developers
can treat a C MPI program as a Ch script and run it
directly within the Ch environment across dif-
ferent platforms, without needing to compile and
link the program to create platform-dependent
executables.

ch: a c/c++ script computing environment
Ch is an embeddable C/C++ interpreter for cross-
platform scripting, shell programming, numerical
computing, network computing, and embedded
scripting.6 Ch is an extension and enhancement
of the most popular Unix/Windows C computing
environment. Because it’s platform independent,
a Ch program developed on one platform can be
executed on a different platform without recompil-
ing and linking. Ch supports all features of the ISO
C90 standard. Many Ch features—such as complex
numbers and variable-length array (VLA)—have
been added to C99. Ch also supports computa-
tional arrays, as in Fortran 90 and MATLAB, for
linear algebra and matrix computations (we offer an
example later that uses Ch computational arrays to
solve a simple matrix equation).

As a scripting environment, Ch allows for quick
and easy application development and mainte-
nance. Developers can use it to glue together
different modules and tools for rapid application
prototyping. Ch users can directly invoke system
utilities that would otherwise require many lines
of code to implement. Once they’ve completed
the rapid prototyping phase, developers can re-
place a Ch script’s commands and utilities with
equivalent C code. The code can also be interpre-
tively run in Ch. This lets developers rapidly test
applications before they’re compiled, thus saving
development time and effort. Once the tests are
complete, users can readily compile their code for
optimized performance. As a C/C++ interpreter
with a user-friendly integrated development envi-
ronment called ChIDE, Ch is especially suitable
for teaching introductory computer program-
ming (http://iel.udavis.edu/cfores).7 Ch is also
suitable for Web-based client-server computing.

Ch programs can be used through a Common
Gateway Interface (CGI) in a Web server for
Web-based computing and through Mobile-C
(www.mobilec.org), a mobile-agent platform, for
mobile-agent based computing.

ch mpi
Our interfacing method applies to any C MPI
implementation; here, we use the MPICH2 C
library example to illustrate how to create a Ch
MPI package for running an MPI program, or
Ch script, in an interpretive environment.

interfacing with an mpi c library
Ch MPI is a Ch binding to the MPICH2 C library
that makes all the MPICH2 C library functions
callable from a Ch script. The Ch software devel-
opment kit (SDK) allows for porting the MPICH2
C library into the Ch space by creating a Ch MPI
package that binds to the MPICH2 C library.
As Figure 1 shows, a Ch MPI package contains
a Ch function library in the Ch space and a Ch
dynamically loaded library in the C space. These
two libraries provide wrapper functions that
let us call MPICH2 C library functions from
within the Ch space. For an MPICH2 C library
function, a wrapper function consists of a chf
function from the Ch function library and a
chdl C function from the Ch dynamically loaded
library. We implement each chf function in a
separate file with the .chf file extension. All
the .chf files constitute the Ch function library.
In contrast, we implement all chdl C functions in
a C program that is compiled to generate the Ch
dynamically loaded library, which is loaded when
an MPI program executes.

Figure 1. Interfacing a Ch script with the MPICH2 C library. A Ch MPI
package lets users call MPICH2 C library functions from within a Ch
script.

Ch function
library

Ch space C space

MPI_Init()

MPICH2
C library

MPI program C code
(Ch script)

MPI function call
MPI_Init()

Ch MPI package

MPI_Init_chdl()

Ch dynamically
loaded library

MPI_Init()

CISE-12-2-Cheng.indd 55 2/9/10 9:13:41 AM

56 Computing in SCienCe & engineering

Figure 1 illustrates the underlying Ch MPI
concept: an MPICH2 C library function,
MPI_Init(), is called by a Ch script—that is, a
C program with MPI function calls—in the Ch
space. To invoke the C function MPI_Init(), Ch
searches the Ch function library for the corre-
sponding Ch function MPI_Init() implemented
in the file MPI_Init.chf and passes parameters
to the function. The Ch function MPI_Init()
then searches through the Ch dynamically loaded
library for the corresponding chdl C function,
MPI_Init_chdl(), and passes parameters to it.
The MPI_Init_chdl() function then invokes
the function MPI_Init() in the MPICH2 C
library. Any return values are passed back to the
initial function call in the Ch space.

We can readily run a C MPI program in Ch
by typing in the script’s name at a Ch shell’s
command prompt. This lets us quickly modify
program code and generate results without re-
compiling and linking the program. When a C
MPI program is still under development, the er-
ror messages given by interpretively executing
the program code in Ch are generally more in-
formative than the messages given by compiling
the program using conventional C compilers. For
example, this occurs in situations where an MPI
program contains syntax errors or accesses ele-
ments beyond an array’s extent.

The key components of a Ch MPI pack-
age include the header file mpi.h, chf func-
tions, and chdl C functions. To illustrate them,
we’ll use the header file mpi.h, the chf func-
tion MPI_Init(), and the chdl C function

MPI_Init_chdl().

header file. The header file mpi.h is included at
the beginning of every C MPI program. This
header file is the same as the one in the MPICH2
C library, with the addition of several statements.
The macro LOAD_CHDL(mpi) invokes a function
named dlopen() that loads the Ch dynami-
cally loaded library libmpi.dl into the Ch in-
terpretive environment. The function dlopen()
returns a handle _Chmpi_handle, which is
used in subsequent calls to functions dlsym()
and dlclose(). The same macro invokes the
function dlclose() to release the dynamically
loaded library libmpi.dl from the Ch interpre-
tive environment when a C MPI program execu-
tion completes.

The chf ch function. As Figure 2 shows, the chf
function MPI_Init() is implemented in the
file MPI_Init.chf. The function call fptr =

dlsym(_Chmpi_handle, “MPI_Init_chdl”)

returns the address of the symbol MPI_Init_
chdl inside the dynamically loaded library libmpi.
dl pointed to by the handle _Chmpi_handle.
The function call dlrunfun(fptr, &retval,

MPI_Init, argc, argv) runs the chdl C func-
tion MPI_Init_chdl() found in the dynamically
loaded library libmpi.dl through the address
pointed to by the pointer fptr. The second pa-
rameter is the address of a variable retval con-
taining the return value of the chdl C function
MPI_Init_chdl(). Because, in this case, the
third parameter, MPI_Init, is the name of the
chf function itself, the number and types of
the remaining parameters are first examined ac-
cording to the function prototype of MPI_Init().

Figure 2. The chf function MPI_Init() is implemented as a separate function file, MPI_Init.chf, in
a Ch MPI package. Such function files constitute the Ch function library of a Ch MPI package. The chf
function MPI_Init() calls the chdl C function MPI_Init_chdl().

#ifdef _CH_
#pragma package <chmpi>
#include <chdl.h>
LOAD_CHDL(mpi);
#endif

int MPI_Init(int *argc, char ***argv) {
 void *fptr;
 int retval;

 fptr = dlsym(_Chmpi_handle, "MPI_Init_chdl");
 if(fptr == NULL) {
 fprintf(_stderr, "Error: %s(): dlsym(): %s\n", __func__, dlerror());
 return -1;
 }
 dlrunfun(fptr, &retval, MPI_Init, argc, argv);
 return retval;
}

CISE-12-2-Cheng.indd 56 2/9/10 9:13:42 AM

marCh/april 2010 57

The last two parameters, argc and argv, are then
passed to the chdl C function MPI_Init_chdl()
if the examination succeeds.

The chdl c function. Figure 3 shows the chdl C
function MPI_Init_chdl(). Even though the
chf function MPI_Init() passes two parameters
to the chdl C function MPI_Init_chdl(), the
latter function still only takes one parameter,
varg, which is a void pointer to the parameter
list. The function call Ch_VaStart(interp,
ap, varg) obtains interp, an instance for the
Ch interpreter, and initializes ap, an object for the
parameter list. These two parameters will be used
in subsequent calls to functions Ch_VaArg() and
Ch_VaEnd(). The two consecutive calls to the
function Ch_VaArg() save the values passed from
the chf function MPI_Init() in the two param-
eters argc and argv, respectively. The function
call retval = MPI_Init(argc, argv) invokes
the function MPI_Init() in the MPICH2 C
library and saves the return value in the variable
retval. The function call Ch_VaEnd(interp,
ap) releases the memory associated with the in-
stance interp and object ap.

executing an mpi program
across Different platforms
To illustrate how a Ch MPI package allows
for interpretive parallel computation, we use an
MPI program, cpi.c,8 for calculating π (see
Figure 4). With a Ch MPI package, we can ex-
ecute the cpi.c program in Ch as is, without
any modification. The program repeatedly asks
users to input the number of intervals to cal-
culate π and exits when the input value is 0. As
Figure 4 shows, the cpi.c program is based on
the equation

f x dx
x

dx() =
+

=∫∫
4

1 2
0

1

0

1

π .

Figure 5 shows an example of the numerical in-
tegration in the cpi.c program (Figure 4). In this
case, we use two processes, P0 and P1, to compute
π with four intervals between 0 and 1. The approxi-
mate value of π is the summation of four rectangles’
areas. Each rectangle has the same base h= 0.25. As
Figure 5 shows, we obtain each rectangle’s height
as the value of f(x), with x equal to the base’s middle
point. Also, each process computes the area of every
other rectangle. Increasing the number of intervals
between 0 and 1 improves the π value’s precision,
but magnifies the processes’ workload.

After a few variable declarations, the cpi.c
program calls the function MPI_Init() to
initialize the MPI environment. The function
MPI_Init() is required in every MPI pro-
gram and must be the first MPI function called.
The function call MPI_Comm_size() saves
the number of processes the user has started
in the parameter numprocs. The function call
MPI_Comm_rank() saves the rank of a process in
the parameter myid. In the MPI, a communica-
tor encompasses a group of processes that can
communicate with each other. All MPI mes-
sages must specify a communicator. Here, the
cpi.c program uses the default communicator
MPI_COMM_WORLD, which contains all processes.
Next, the user inputs the value of n (the number
of intervals) to the master process, whose myid
is 0. The function call MPI_Bcast() sends the n
value from the master process to all the worker
processes, whose myid is not 0. After the func-
tion call MPI_Bcast(), all processes have n
and their own myid, which is enough informa-
tion for each process to compute its mypi. Each
process does this by calculating the total area
for a certain number of rectangles, whose or-
dinal numbers begin with myid+1 and increase
by numprocs. Next, the function call MPI_
Reduce() sums up all mypis from all pro-
cesses. The result is saved in the variable pi of
the master process. All processes then return to
the top of the loop, except for the master pro-
cess, which first prints the results. When the
user types “0” in response to the interval number
request, the loop terminates and all processes
call the function MPI_Finalize(), which ter-
minates the MPI environment.

Figure 3. The chdl C function MPI_Init_chdl() in a Ch MPI
package. Such chdl C functions are implemented in one single file
that is compiled to generate the Ch dynamically loaded library of a
Ch MPI package. The chdl C function MPI_Init_chdl() calls the
function MPI_Init() in the MPICH2 C library.

EXPORTCH int MPI_Init_chdl(void *varg) {
 ChInterp_t interp;
 ChVaList_t ap;
 int *argc;
 char ***argv;
 int retval;

 Ch_VaStart(interp, ap, varg);
 argc = Ch_VaArg(interp, ap, int *);
 argv = Ch_VaArg(interp, ap, char ***);
 retval = MPI_Init(argc, argv);
 Ch_VaEnd(interp, ap);
 return retval;
}

CISE-12-2-Cheng.indd 57 2/9/10 9:13:44 AM

58 Computing in SCienCe & engineering

Figure 6 shows the cpi.c script execution se-
quence in Ch using the MPICH2-based Ch MPI
package in an environment with two different
platforms—Linux and Windows—which both
contain the script cpi.c. MPICH2 provides
the super multipurpose daemon (SMPD), which
supports an MPI program’s execution on a com-
bination of Linux and Windows platforms. The
sequence in Figure 6 includes four steps:

The user starts the SMPDs on both machines. •	
The user runs the •	 mpiexec program to send
the execution message (mpiexec command line
arguments) to the local SMPD.
The local SMPD distributes the message to the •	
remote SMPD.
According to the received execution message, •	
each SMPD launches a Ch interpreter to exe-
cute the specified C MPI script, cpi.c, through
the Ch MPI package.

Figure 7 shows the master process output from
executing cpi.c on both Linux (phoenix) and
Windows (mouse1) platforms. The master process
is on the local phoenix machine. The machines
argument in Figures 6 and 7 is an MPICH2 host
file used to specify the information for all the ma-
chines contributing to the parallel computation.
Likewise, the password argument (also shown in
both figures) is a password file used to specify a
username and password. Each machine invokes
a Ch interpreter by placing ch as the execut-
able in the mpiexec command line. The -u is a
ch option that unbuffers the standard output
stream, which is line buffered by default. When
line buffered, the system waits for a new line char-
acter before writing the buffer contents onto the
terminal screen. Using the -u option can prevent
the cpi.c execution from halting.

performance evaluation of ch mpi
Here, we present results from comparing C MPI’s
bandwidth and latency with those of Ch MPI.
We also show execution performance for Ch MPI
and MatlabMPI using programs for parallel and
serial calculation of π, and for C MPI and Ch MPI
using a program for 2D matrix multiplication.

performance evaluation setup
Our 64-Bit Linux cluster contains 10 nodes,
each with 8 Gbytes of RAM and eight quad-core
AMD Opteron processors running at 1.8 GHz.
All nodes are connected through a switch with a
1 Gigabit/sec transmission rate. The heterogeneous
network cluster contains Linux and Windows

Figure 5. The cpi.c program’s principle for
computing π with multiple processes. Here, the
approximate value of π is the summation of four
rectangles’ areas calculated by two processes.

P 0

0
base

f(
x)

x
1

0

1

2

3

4

P 0
P 1

P 1

f(x1)

x1 0.25 0.5 0.75x2 x3 x4

f(x2) f(x) = 4/(1 + x*x)

f(x3)

f(x4)

Figure 4. The cpi.c program for the parallel computation of π.
The program repeatedly asks users to input the number of intervals
to calculate π, and exits when the input value is 0.

/**
* File: cpi.c
* Purpose: Parallel computation of pi with the
* number of intervals from standard input.
**/
#include <mpi.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char *argv[]) {
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numproces);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 while(1) {
 if(myid == 0) {
 printf("Enter the number of intervals:
 (0 quits) ");
 scanf("%d", &n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if(n == 0) { // program quits if the interval
 // is 0
 break;
 }
 else {
 h = 1.0 / (double)n;
 sum = 0.0;
 for(i=myid+1; i<=n; i+=numproces) {
 x = h * ((double)i – 0.5);
 sum += (4.0 / (1.0 + x*x));

 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM,
 0, MPI_COMM_WORLD);
 if(myid == 0) {
 printf("PI is %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 }
 }
 }
 MPI_Finalize();
 return 0;
}

CISE-12-2-Cheng.indd 58 2/9/10 9:13:45 AM

marCh/april 2010 59

machines. Each machine has an Intel Pentium 4
processor running at 3.2 GHz and 512 Mbytes of
RAM. All of the machines are connected through
a switch with a 100 Megabit/sec transmission rate.

We also use two homogeneous network clus-
ters: one consists of only Linux machines, and the
other of only Windows machines. Each machine
in both clusters has one Intel Pentium 4 processor
running at 3.2 GHz and 512 Mbytes of RAM. All
of the machines are connected through a switch
with a 100 Megabit/sec transmission rate.

Bandwidth and latency Benchmark
We benchmarked and compared Ch MPI to
a native C MPI implementation, MPICH2,

in terms of bandwidth and latency. Hardware
setups for the benchmark were as follows (the
letters correspond to the results in Figures 8
and 9):

two nodes from the 64-bit Linux cluster, using •	
one processor from each node (a);
one node from the 64-bit Linux cluster, using •	
two of the node’s processors (b);
one Linux machine and one Windows machine •	
from the heterogeneous network cluster (c);
two Linux machines from the homogeneous •	
Linux network cluster (d); and
two Windows machines from the homogeneous •	
Windows network cluster (e).

Figure 6. Executing cpi.c across Linux and Windows platforms in Ch using the MPICH2-based Ch MPI package. Each
SMPD launches a Ch interpreter to run cpi.c to calculate a partial π. Through Ch and Ch MPI, we can perform parallel
computation across heterogeneous platforms with identical Ch scripts.

4

Super multipurpose
daemon (SMPD)

Super multipurpose
daemon (SMPD)

Local Linux machine

mpiexec –machinefile machines –pwdfile password –n 2 ch –u cpi.c

MPICH2 C
library

MPICH2 C
library

Remote Windows machine

Ch

Ch MPI package Ch MPI package

cpi.c

Ch

cpi.c

Execution
message

Execution
message

4

1

1

2

3

Network

Execution
message

Figure 7. The master process output when executing cpi.c on Linux (phoenix) and Windows (mouse1)
platforms. The master process is on the local phoenix machine, while the worker process is on the remote
mouse1 machine.

CISE-12-2-Cheng.indd 59 2/9/10 9:13:47 AM

60 Computing in SCienCe & engineering

We obtained the benchmark programs running
in both Ch MPI and native C MPI from Ohio
State University’s Mvapich project (that is, an
MPI implementation over the InfiniBand VAPI

interface based on the MPICH implementation;
see http://mvapich.cse.ohio-state.edu); they’re also
available on our own Web site (http://iel.ucdavis.
edu/projects/chmpi). Both tests included the use

Figure 8. Bandwidth test results for C MPI and Ch MPI in semi-log plots. The hardware setups were (a) a 64-bit Linux cluster
with two processors and two nodes, (b) a 64-bit Linux cluster with two processors and one node, (c) a heterogeneous
network cluster, (d) a Linux network cluster, and (e) a Windows network cluster.

0
1 10 10

0
1,

00
0

10
,0

00

Message size (bytes)

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0 1 10 10

0
1,

00
0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

1 10 10
0

1,
00

0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

1 10 10
0

1,
00

0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

1 10 10
0

1,
00

0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

20

40

60

80

100

Ba
nd

w
id

th
 (

M
B/

s)

120

0

Message size (bytes)(a) (b)

Message size (bytes)

Message size (bytes)(e)

Message size (bytes)(c) (d)

200

100

300

400

500

700

600

800

900

Ba
nd

w
id

th
 (

M
B/

s)

1,000

0

2

4

6

8

10

Ba
nd

w
id

th
 (

M
B/

s)

12

0

2

4

6

8

10

Ba
nd

w
id

th
 (

M
B/

s)

12

0

2

4

6

8

10

Ba
nd

w
id

th
 (

M
B/

s)

12

C MPI
Ch MPI

C MPI
Ch MPI

C MPI
Ch MPI

C MPI
Ch MPI

C MPI
Ch MPI

CISE-12-2-Cheng.indd 60 2/9/10 9:13:49 AM

marCh/april 2010 61

of a sender and receiver process, running on sepa-
rate processors.

bandwidth testing. In this test, we calculated band-
widths for different message sizes. For each mes-
sage size, the sender process consecutively sent
out a fi xed number of messages of that size to the
receiver process and waited for the receiver pro-
cess to reply, which it would do only after receiv-
ing all of the messages. This procedure repeated
for several iterations; we then calculated the band-
width for each message size. We based the calcu-
lation on the number of bytes sent by the sender
process and the elapsed time between when the
sender process sent out the fi rst message and when
it received the reply from the receiver process. We
used nonblocking MPI functions, MPI_Isend()
and MPI_Irecv(), in the bandwidth test.

Figure 8 shows the bandwidth test results of C
MPI and Ch MPI, with the x-axis on a base-10
logarithmic scale. Ch MPI’s bandwidth is com-
parable to that of C MPI for cases (a) and (b) in
the 64-bit Linux cluster setup. Ch MPI’s band-
width is very close to that of C MPI for cases
(c) through (e) on the heterogeneous and homog-
enous network cluster setups in both Linux and
Windows.

latency testing. In this test, we calculated latencies
with respect to different message sizes. For each
message size, the sender process sent out one mes-
sage of that size to the receiver process and waited
for the receiver process to reply. The receiver pro-
cess received the sender’s message and sent back
a reply of the same message size. This procedure
repeated for several iterations; we then calcu-
lated the average one-way latency regarding that
message size. We used blocking MPI functions,
MPISend() and MPIRecv(), in the latency test.

Figure 9 shows the latency test results for C
MPI and Ch MPI with both the x- and y-axis
on a base-10 logarithmic scale. Ch MPI’s latency
is comparable to that of C MPI for cases (a) and
(b) in the 64-bit Linux cluster setups. Ch MPI’s
latency is very close to that of C MPI for cases
(c) through (e) on the heterogeneous and homo-
geneous network cluster setups in both Linux and
Windows.

parallelized execution performance testing
We ran a parallelized execution performance
comparison between Ch MPI and MatlabMPI for
the π calculation and an execution performance
comparison between C MPI and Ch MPI for 2D
matrix multiplication.

calculating π. For this test, we used three ma-
chines from the Windows network cluster. We
fi rst evaluated the serial performances for non-
MPI programs, cpi_serial.c, cpi_serial.m,
and the compiled executable of cpi_serial.
c–cpi_serial.exe. The serial performance
provides execution times for the for-loop to
calculate π with different intervals using a single
processor. In Table 1, n represents the number
of intervals. As Table 1 shows, the interpretive
execution performance in Ch is approximately
2.35 times faster than Matlab in the serial per-
formance test. Meanwhile, the execution of the
compiled executable is approximately 154 times
faster than the same C source code’s interpretive
execution.

To compare parallel execution performance,
we used the programs cpi_parallel.c,
cpi_parallel.m, and the compiled executable
of cpi_parallel.c–cpi_parallel.exe. To
create the program cpi_parallel.c, we slightly
modifi ed cpi.c in Figure 4 such that each pro-
cess sums up the areas of consecutive rectangles
instead of spaced rectangles. The program cpi_
parallel.m is a Matlab program corresponding
to cpi_parallel.c. MatlabMPI provides the
MPI functions used in cpi_parallel.m.4 In both
programs, we set n to 4,800,000. We obtained the
start time before all the processes began their com-
putation, and the end time after the root process
collected partial values from all other processes
to obtain the fi nal value of π. The execution time
is the interval between the start and end times.
Because the MPI function MPI _Wtime() is not
supported in MatlabMPI, we used Matlab func-
tions tic and toc to obtain the execution time
in cpi_parallel.m. To have a fair time evalu-
ation against MatlabMPI, we used the equivalent
standard C function clock() to get the execution
time for running cpi_parallel.c. As Table 2
shows, the interpretive execution performance in
Ch is approximately 2.35 times faster than Matlab
in the parallel performance test. Meanwhile, the
execution of the compiled executable is approxi-
mately 154 times faster than the same C source
code’s interpretive execution.

table 1. execution times of non-mpi codes in a single processor.

execution time (s)

n cpi_serial.exe cpi_serial.c cpi_serial.m

4,800,000 0.0588 9.103 21.581

2,400,000 0.0295 4.55 10.772

1,600,000 0.0196 3.037 7.15

CISE-12-2-Cheng.indd 61 2/9/10 9:13:49 AM

62 Computing in SCienCe & engineering

Figure 9. C MPI and Ch MPI latency test results in log-log plots. As in previous tests, the hardware setups were (a) a 64-bit
Linux cluster with two processors and two nodes, (b) a 64-bit Linux cluster with two processors and one node,
(c) a heterogeneous network cluster, (d) a Linux network cluster, and (e) a Windows network cluster.

1

Message size (bytes)

10

100

1,000

10,000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

1,00,000

1

Message size (bytes)(a) (b)

Message size (bytes)

Message size (bytes)(e)

Message size (bytes)(c) (d)

100

10

1,000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

10,000

1

100

1,000

10

10,000

1,00,000

10,00,000

1

100

1,000

10

10,000

1,00,000

10,00,000

1

100

1,000

10

10,000

1,00,000

10,00,000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

C MPI
Ch MPI

C MPI
Ch MPI

C MPI
Ch MPI

C MPI
Ch MPI

C MPI
Ch MPI

1 10 10
0

1,
00

0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0 1 10 10

0
1,

00
0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

1 10 10
0

1,
00

0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
01 10 10

0
1,

00
0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

1 10 10
0

1,
00

0

10
,0

00

1,
00

,0
00

10
,0

0,
00

0

1,
00

,0
0,

00
0

CISE-12-2-Cheng.indd 62 2/9/10 9:13:51 AM

marCh/april 2010 63

As Tables 1 and 2 show, the programs
spend most of their time on the for-loop that
calculates π. As expected, executing the compiled
executable is signifi cantly faster than the cor-
responding interpretive execution of the same C
source code or Matlab script. All methods scale
linearly with the number of processors.

For a program that mainly performs the com-
putation by an iteration statement, such as the
for-loop that calculates π, it’s signifi cantly slow-
er to run the program source code through an
interpreter than a compiled executable. However,
we can use Ch SDK to make binary functions, for
some commonly used iteration statements, callable
in a Ch script; with binary functions being called
from the source code to perform time-consuming
iterative calculations, the source code’s execution
performance can be comparable to that of a com-
piled executable.

2d matrix multiplication. A matrix multiplica-
tion for-loop performs time-consuming cal-
culations. As an example, we used the program
mm_parallel.c and its compiled executable
mm_parallel to perform the second parallel ex-
ecution test for matrix multiplication on the 64-bit
Linux cluster, where each of the cluster’s processors
runs one process. We created a library, libmxm.a,
together with a header fi le, mxm.h, to provide a
function, matrixmultiply(), which performs
2D matrix multiplication. We generated the com-
piled executable mm_parallel with libmxm.a.
Using Ch SDK, we created a Ch dynamically
loaded library, libmxm.dl, and a Ch function
fi le, matrixmultiply.chf, to make the function
matrixmultiply() callable from within the Ch
script mm_parallel.c.

We set the sizes of matrices A, B, and C in mm_
parallel.c to 2,880 × 2,000, 2,000 × 450, and
2,880 × 450, respectively. In this test, the mas-
ter process didn’t contribute to the computation,
and we accounted only for the time spent by each
worker process to complete its own computation.
We determined the execution time by fi nding the
maximum time among all the times spent by work-
er processes to fi nish the matrix multiplication

function call. The MPI function, MPI_Wtime(),
was called to obtain the time in seconds.

Figure 10 shows the execution times and
Figure 11 shows the execution speedups from
running these two programs with different num-
bers of processors. The number of processors in
Figures 7 and 8 refers to the number of worker
processes that contributed to the computa-
tion. As Figure 10 shows, the execution times of

Figure 10. Execution times of mm_parallel
and mm_parallel.c. Execution times of mm_
parallel.c are almost the same as those of
mm_parallel.

0 10 20 30 40 50 60 70

Number of processors

0

10

20

30

40

50

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

60

mm_parallel
mm_parallel.c

Figure 11. Execution speedups of mm_parallel
and mm_parallel.c. Ch MPI scales linearly, with
almost the same rate as C MPI.

0 10 20 30 40 50 60 70

Number of processors

0

10

20

30

40

60

50

Ex
ec

ut
io

n
sp

ee
du

p

70

mm_parallel
mm_parallel.c

table 2. execution performances of mpi codes.

of processors
(n = 4,800,000)

cpi_parallel.exe cpi_parallel.c cpi_parallel.m

execution time (s) speedup execution time (s) speedup execution time (s) speedup

1 0.0598 1 9.206 1 21.597 1

2 0.03 1.993 4.609 1.997 10.85 1.991

3 0.02 2.99 3.068 3 7.25 2.979

CISE-12-2-Cheng.indd 63 2/9/10 9:13:53 AM

64 Computing in SCienCe & engineering

mm_parallel.c are almost identical to those of
mm_parallel. Figure 11 shows that Ch MPI scales
linearly, with almost the same rate as C MPI.

Because the function matrixmultiply()

was called only once by each worker process, the
mm_parallel.c’s execution times are almost
identical to those of mm_parallel. As we not-
ed earlier, if such a binary function is repeat-
edly called, a source code’s execution time won’t
be comparable to that of a compiled executable.
However, Ch MPI saves user development effort
because it doesn’t compile and link a program ev-
ery time a change is made.

We can use Ch computational arrays to carry
out matrix computation for applications that don’t
need to compile an MPI program for performance
reasons with respect to other parts of the pro-
gram. The program in Figure 12 shows how to
use Ch computational arrays to solve the equation
Ax = b, given that

A =





















8 1 6
3 5 7
4 9 2

and b=





















1
2
3

.

The header file array.h must be in-
cluded to utilize Ch computational arrays. As
Figure 12 shows, the program’s header file
numeric.h contains the header file array.h
and the function prototype of the function in-
verse() for computing the inverse of a matrix.
Matrix A and vectors b and x are declared as Ch
computational arrays of type array double.
We obtain the solution vector x simply through

the statement x = inverse(A)*b. The pro-
gram’s output is

x =

 0.05

 0.30

 0.05

With Ch computational arrays, we can specify
vector and matrix operations in a C source code as
scalar operations, as Figure 12 shows. In addition,
declaring a matrix as a Ch computational array is
straightforward regardless of the matrix’s size.

applications
We now describe two example Ch MPI applica-
tions. The first involves task farming with existing
precompiled executables and the second involves
Web-based parallel computing in a heterogeneous
environment.

task Farming with ch mpi
Task farming is a technique used to achieve high
throughput of serial tasks on parallel computers.
MPI is a suitable approach for implementing task
farm programs that benefit from parallel comput-
ing.9 A task farm program essentially consists of
a master section and a worker section. When the
task farm program is running in a parallel environ-
ment, a single master process and several worker
processes are launched to perform whatever is de-
fined in the program’s master and worker sections.
Each process runs on a different processor.

In general, the master process receives requests
from worker processes for tasks and sends tasks
to worker processes until all tasks have been fin-
ished; it then notifies worker processes to quit.
Until notified to quit, worker processes continu-
ously request and execute new tasks from the
master process. In the task farm paradigm, tasks
are independent of each other and usually repre-
sent an intensive computation to be performed
on a worker processor. Therefore, executing in-
dependent tasks usually means calling/running a
common precompiled function/executable with
different inputs.

Some task farm programs are for applications
that must run an existing precompiled execut-
able over a set of parameters to generate a set of
results—such as in parameter searching or ensem-
ble studies. Such programs are mainly composed
only of functions dealing with message transfer
between the master and worker processes. In addi-
tion, the master part of those task farm programs
can also change the conventional first-come,

Figure 12. Using Ch computational arrays to solve
the equation Ax = b. With Ch computational
arrays, we can specify matrix operations as scalar
operations.

#include <stdio.h>
#include <numeric.h>

int main()
{
 array double A[3][3] = {8,1,6,

7,,5,3
;}2,9,4

 array double b[3][1] = {1,2,3};
 array double x[3][1];

 x = inverse(A)*b;
 printf("x =\n%7.2f", x);

 return 0;
}

CISE-12-2-Cheng.indd 64 2/9/10 9:13:55 AM

marCh/april 2010 65

first-serve strategy by adopting different algo-
rithms to coordinate the task distribution among
worker processes for different concerns. In some
cases, for example, the master process can specify
the number of tasks sent to a particular worker pro-
cess each time or limit the total amount of tasks
performed by certain worker processes. Ch MPI can
effectively facilitate the design of such a task farm
program because a user can change the program and
readily test it without the compilation process.

As an example, a simple MPI task farm program
task_farm.c can run on different numbers of
processors to handle a total of 64 identical tasks
on our Linux cluster. The tasks are saved in an
input file, tasks, for the task farm program.
Each task consists of consecutive commands cd
output; ../nbody 1000 > out_1. Thus, each
task stands for changing to a subdirectory, output,
running an executable, nbody, from the parent di-
rectory with a command line argument, 1000, and
redirecting the executable’s output to a file, out_1.
All the commands for one task should be separated
by semicolons and on the same line. Because each
task is identical, a linear execution speedup is ex-
pected as the number of processors increases.

The nbody executable performs a simplified
N-body simulation10 associated with a 1D line
of N particles. The number of particles is speci-
fied as a command line argument. Each particle
has an initial position on the x-axis. Evaluating
a particle’s position depends on all the forces
exerted on this particle from all other particles.
A force exerted on a particle from another particle
is proportional to the inverse of the square of the
distance between these two particles. Forces on
a given particle from any particles on its left side
have a negative value because they’re pulling the
particle in the negative x direction; forces from
any particles on its right side have a positive value.
The program eventually outputs the average dis-
tance between two adjacent particles.

The execution time in task_farm.c is the time
required to finish all 64 tasks. Figure 13 shows ex-
ecution speedups for different numbers of proces-
sors running task_farm.c; a linear speedup is
obtained as the number of processors increases.

With Ch MPI, users can readily run a task
farm program such as task_farm.c on multiple
processors without compilation to decrease task-
completion time.

Web-Based application of ch mpi
for parallel computing
The CGI is a standard for interfacing external
applications with Web servers. A Web server

can execute a CGI program to run external
applications and output dynamic results. Al-
though developers can write a CGI program
in any language, using scripting languages
makes it easier to debug, modify, and maintain.

0 10 20 30 40 50 60 70
Number of processors

0

10

20

30

40

60

50

Ex
ec

ut
io

n
sp

ee
du

p

70

Figure 13. Execution speedups for different
numbers of processors running task_farm.c
to finish 64 identical tasks. A linear speedup is
obtained as the number of processors increases.

Figure 14. A Ch CGI script performs multiple tasks
on the Web server in the Web-based parallel
computing application. It collects information
from an HTML document, retrieves an uploaded
MPI program or archived file, creates an MPICH2
host file and other Ch scripts, and invokes Ch
interpreters to run those scripts.

HTTP server

3

2

1

Ch script 2

Ch script 2

Ch

Ch

Ch script 1

Ch script 1

MPICH2
host �le

MPI program/
zip �le

HTML
document

Ch CGI
script

CISE-12-2-Cheng.indd 65 2/9/10 9:13:57 AM

66 Computing in SCienCe & engineering

Ch is suitable for Web-based applications due to
its interpretive nature. Like Java Server Page and
Active Server Page, the Ch CGI Toolkit provides
four easy-to-use classes for CGI programming in
Ch: CResponse, CRequest, CServer, and CCookie.
We’ve developed many Web-based applications—
such as a Web-based system for control system
design and analysis—using the Ch CGI Toolkit.

In our example case here, we use the Apache
HTTP server as the Web server for our parallel
computing system. Users’ requests are sent to the
Web server as HTML documents. The comput-
ing resources consist of our Linux and Windows
network clusters.

As Figure 14 shows, a Ch CGI script
in the Web server performs multiple tasks.
First, the Ch CGI script parses an HTML doc-
ument to collect useful information. Next, it
retrieves from the collected information an up-
loaded MPI program or archived file, generates
an MPICH2 host file, and further creates several
Ch scripts. Finally, the Ch CGI script invokes
Ch interpreters to run the created Ch scripts.
Each created Ch script performs one of the fol-
lowing tasks:

distribute the MPI program or archived file •	
to the machines specified in the generated
MPICH2 host file;
start the SMPDs;•	
extract files from the archived file if needed;•	
execute the MPI program on the specified •	
hosts;
remove the uploaded file, and extracted files if •	
any, from the specified hosts; and
terminate the SMPDs.•	

Figure 15 shows our Web-based parallel com-
puting system’s user interface. Users can select
the computing resources to use and upload a C
MPI program source code for execution. For
some specific MPI programs, such as compu-
tational fluid dynamics simulations, extra files
like a grid file and an initial condition file are
required. In such cases, a user can upload an
archived file that contains a C MPI program
source code along with all the necessary files
through the user interface. Figure 16 shows
the results from running mm_parallel.c on
four computers with small matrices through the
Web-based parallel computing application. The
sizes of the matrices A, B, and C are 12 × 15,
15 × 7, and 12 × 7, respectively.

A Ch MPI package lets developers
run identical MPI C scripts across
heterogeneous platforms. Inter-
pretive computing in Ch MPI is

efficient in comparison with other scripting
solutions, running more than twice as fast as
both Matlab (for sequential π calculation) and
MatlabMPI (for parallel π calculation). Also,

Figure. 15. The user interface of the Web-based parallel computing
application. Through the user interface, a user can select the
computing resources, upload an MPI program source code or an
archived file, and view the execution results.

Figure 16. Results from running mm_parallel.c through the Web-
based parallel computing application. The resultant matrix is obtained
by parallel 2D matrix multiplication on four computers.

CISE-12-2-Cheng.indd 66 2/9/10 9:13:59 AM

marCh/april 2010 67

using Mobile-C (www.mobilec.org), users can
dynamically generate, deploy, and execute C
programs written with Ch MPI across different
platforms in a network. Such dynamic parallel
computing has great potential for many challeng-
ing applications such as data mining, autonomic
parallel computing, grid computing, and cloud
computing.

All of the codes we described in this article
are available on the Ch MPI Web site (http://iel.
ucdavis.edu/projects/chmpi).

references
M. Snir et al., 1. MPI: The Complete Reference—The MPI

Core, 2nd ed., MIT Press, 1998.

L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” 2.

J. Parallel and Distributed Computing, vol. 65, no. 9,

2005, pp. 1108–1115.

L. Dalcin et al., “MPI for Python: Performance 3.

Improvements and MPI-2 Extensions,” J. Parallel

and Distributed Computing, vol. 68, no. 5, 2008,

pp. 655–662.

K. Jeremy and S. Ahalt, “MatlabMPI,” 4. J. Parallel

and Distributed Computing, vol. 64, no. 8, 2004,

pp. 997–1005.

E. Ong, “MPI Ruby: Scripting in a Parallel Environ-5.

ment,” Computing in Science & Eng., vol. 4, no. 4,

2002, pp. 78–82.

H.H. Cheng, “Scientific Computing in the Ch 6.

Programming Language,” Scientific Programming,

vol. 2, no. 3, 1993, pp. 49–75.

H.H. Cheng, 7. C for Engineers and Scientists: An

Interpretive Approach, McGraw-Hill, 2009.

W. Gropp, E. Lusk, and A. Skjellum, 8. Using MPI:

Portable Parallel Programming with Message Passing

Interface, 2nd ed., MIT Press, 1999.

P. Marques, “Task Farming and the Message Passing 9.

Interface,” Dr. Dobb’s J., vol. 28, no. 9, 2003,

pp. 32–37.

S.J. Aarseth, 10. Gravitational N-Body Simulations: Tools

and Algorithms, Cambridge Univ. Press, 2003.

Yu-cheng chou is an assistant professor in the De-
partment of Mechanical Engineering at Chung Yuan
Christian University, Taiwan. His research interests
include mobile agent-based computing, autonomic
computing, parallel computing, intelligent mecha-
tronics and embedded systems, and software and
system integration. Chou has a PhD in mechanical
and aeronautical engineering from the University of
California at Davis. He is a member of the IEEE and
the ASME. Contact him at ycchou@cycu.edu.tw.

stephen s. nestinger is an assistant professor in me-
chanical engineering at the Worcester Polytechnic

Institute. His research interests include cooperative
multirobot systems, robotics, space robotics,
vision systems, control systems, mechatronics, real-
time systems, software and systems integration,
and mobile agent systems. Nestinger has a PhD
in mechanical and aeronautical engineering from
the University of California at Davis. He is a mem-
ber of the IEEE and the ASME. Contact him at
ssnestinger@wpi.edu.

harry h. cheng is a professor in the Department
of Mechanical and Aerospace Engineering and the
Graduate Group in Computer Science at the Univer-
sity of California, Davis, where he directs the Inte-
gration Engineering Laboratory. He is the founder
of SoftIntegration, Inc., and the original designer
and implementer of an embeddable C/C++ inter-
preter Ch for cross-platform scripting. His research
is focused on computer-aided engineering, mobile-
agent-based computing, intelligent mechatronic
and embedded systems, and innovative teaching.
He is author of C for Engineers and Scientists:
An Interpretive Approach (McGraw-Hill, 2009).
Cheng has a PhD in mechanical engineering from
the University of Illinois at Chicago. He is a fellow of
the ASME and a senior member of the IEEE. Contact
him at hhcheng@ucdavis.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-12-2-Cheng.indd 67 2/9/10 9:14:06 AM

