
2 mechanical engineering | September 2009

/* File: bisectmethod.c

 Find a root for projectile funct using bisection method in range [60, 70] */

#include <stdio.h>

#include <math.h> /* for fabs() */

#include <float.h> /* for FLT_EPSILON */

#define M_G 9.81 /* gravitational acceleration constant g */

/* function for the y-coordinate of the projectifle */

double func(double x) {

 double theta0, /* initial velocity */

 v0, /* projection angle */

 y; /* y coordinate */

 theta0 = 15*M_PI/180; /* set the projection angle in radian */

 v0 = 35.0; /* set the initial velocity */

 y = tan(theta0)*x - M_G*x*x/(2*v0*v0*cos(theta0)*cos(theta0));

 return y;

}

int main() {

 double xleft, fleft; /* x and f(x) on the left of the root */

 double xright; /* x on the right of the root */

 double xmid, fmid; /* x and f(x) on the mid of xleft and xright */

 double tolerance; /* convergence tolerance */

 double x0 = 60.0, xf = 70.0; /* initial end points */

 /* initialize xleft and xright with initial end points */

 xleft = x0;

 xright = xf;

 /* use machine epsilon for float type as convergence tolerance */

 tolerance=FLT_EPSILON;

 /* The signs of f(xleft) and f(xright) must be different

 to guarantee there is a root */

 fleft = func(xleft); /* calculate f(xleft) */

 if(fleft * func(xright) > 0.0) { /* invalid x0 and xf */

 printf(“Error: invalid end points\n”);

 return -1; /* return -1 for invalid xleft and xright */

 }

 xmid = (xleft+xright)/2.0; /* mid point */

 fmid = func(xmid); /* f() in the mid point */

 while(fabs(fmid) > tolerance) {/* convergence criterion to terminate loop */

 /* f(xleft)*f(mid) to determine the updating of left or right point */

 if(fleft*fmid <= 0.0) { /* mid point becomes the right point */

 xright = xmid; /* update the right point */

 }

 else { /* mid point becomes the left point */

 xleft = xmid; /* update the left point */

 fleft = fmid; /* update f(xleft) */

 }

 xmid = (xleft+xright)/2.0; /* update the mid point */

 fmid = func(xmid); /* f() in the mid point */

 }

 printf(“x = %f m, func(x) = %g\n”, xmid, fmid);

 return 0;

}

 xmid = (xleft+xright)/2.0; /* mid point */

 fmid = func(xmid); /* f() in the mid point */

 while(fabs(fmid) > tolerance) {/* convergence criterion to terminate loop */

 /* f(xleft)*f(mid) to determine the updating of left or right point */

 if(fleft*fmid <= 0.0) { /* mid point becomes the right point */

 xright = xmid; /* update the right point */

 }

 else { /* mid point becomes the left point */

 xleft = xmid; /* update the left point */

 fleft = fmid; /* update f(xleft) */

 }

 xmid = (xleft+xright)/2.0; /* update the mid point */

 fmid = func(xmid); /* f() in the mid point */

 }

 printf(“x = %f m, func(x) = %g\n”, xmid, fmid);

 return 0;

}

// C
// for the
// Course

Harry H. Cheng is a professor in the Department of Mechani-
cal and Aerospace Engineering at the University of California,
Davis, and an ASME Fellow

What do you teach if the ME
curriculum allows only 10
weeks to devote to computer
programming? This is why UC
Davis made its choice.
By Harry H. Cheng

riting computer programs to solve
complicated engineering problems
and to control mechanical devices
is a basic skill all engineers must
master, so most colleges require all
undergraduate engineering students

to take some computer programming courses.
Yet the number and type of courses they take vary

widely. For example, my school, University of Califor-
nia, Davis, requires electrical engineering students to
take four courses related to computer programming:
Assembly for hardware interface, C for structured pro-
gramming and hardware interface, Matlab for numerical
computing, and C++ for object-oriented programming.

This is not the case for mechanical engineering stu-
dents. Because the curriculum is already bulging with
requirements, most universities mandate that mechanical
engineering students take only one introductory course
in problem-solving programming.

But which language should students learn? As more
and more mechanical devices add integrated electronic
controls, the choice of programming language becomes
more pressing than ever before. Which language is the
best, or the most popular, or the most useful in a future
career? The question evokes contentious, often emotion-
al faculty debates of near-religious intensity.
UC Davis’s mechanical engineering department went

through this kind of debate twice in the past decade,
and we learned many painful lessons from the expe-
rience. In 1998, Matlab, a mathematical program-
ming language with strong visualization capabilities,
replaced Fortran, a more traditional language, as one
of the four required programming courses in the elec-
trical engineering curriculum. In a move championed
by an upper level administrator, Matlab also replaced

Fortran in the mechanical engineering curriculum.
After four years, it was apparent that our students’ over-

all programming skills had declined significantly in com-
parison with previous students who had learned Fortran.
Our new graduates could not handle some of the senior
design projects sponsored by our industrial partners or
other real-world programming tasks.

For example, I supervised a senior project sponsored by
Lockheed Martin to design a prototype robotic system to
gather rock and soil samples on Mars. The sponsor speci-
fied an Atmel 8-bit microcontroller, which can only be
programmed using either C or Assembly language. Of the
four students on the team, only one student who took a C
programming course offered to computer science students
could program the microcontroller for system integration
and testing.

Our department also noticed that graduate students
who learned only Matlab had difficulty handling research
projects that involved serious programming. As a result,
in 2003, we redesigned our curriculum to offer a new
course that combined C programming with an intro-
duction to Matlab.

 // Why C?
There were many reasons to go with C. We all believed
that an introductory course in programming for prob-
lem solving should use a non-proprietary programming
language that adheres to an international standard. Stan-
dard programming languages, such as C and Fortran,
are supported and maintained by all major computing
industry companies.

A standardized programming language is stable and its
evolution is overseen by a technical standards committee
made up of business, academic, and organizational repre-
sentatives with a stake in the language. For example, the
first C standard, C89, was released in 1989 by the ANSI
X3J11 and ISO S22/WG14 C Standard Committees. The
second (and latest) C standard, C99, was ratified in 1999
and added many new features, such as complex numbers,

September 2009 | mechanical engineering 3

int main() {

 double xleft, fleft; /* x and f(x) on the left of the root */

 double xright; /* x on the right of the root */

 double xmid, fmid; /* x and f(x) on the mid of xleft and xright */

 double tolerance; /* convergence tolerance */

 double x0 = 60.0, xf = 70.0; /* initial end points */

 /* initialize xleft and xright with initial end points */

 xleft = x0;

 xright = xf;

 /* use machine epsilon for float type as convergence tolerance */

 tolerance=FLT_EPSILON;

 /* The signs of f(xleft) and f(xright) must be different

 to guarantee there is a root */

 fleft = func(xleft); /* calculate f(xleft) */

 if(fleft * func(xright) > 0.0) { /* invalid x0 and xf */

 printf(“Error: invalid end points\n”);

 return -1; /* return -1 for invalid xleft and xright */

 }

 xmid = (xleft+xright)/2.0; /* mid point */

 fmid = func(xmid); /* f() in the mid point */

 while(fabs(fmid) > tolerance) {/* convergence criterion to terminate loop */

 /* f(xleft)*f(mid) to determine the updating of left or right point */

 if(fleft*fmid <= 0.0) { /* mid point becomes the right point */

 xright = xmid; /* update the right point */

 }

 else { /* mid point becomes the left point */

 xleft = xmid; /* update the left point */

 fleft = fmid; /* update f(xleft) */

 }

 xmid = (xleft+xright)/2.0; /* update the mid point */

 fmid = func(xmid); /* f() in the mid point */

 }

 printf(“x = %f m, func(x) = %g\n”, xmid, fmid);

 return 0;

}

variable length arrays for numerical computing, and sup-
port for 64-bit computing. All variations of C that con-
form to the C99 standard contain these features.

As a language, C continues to evolve but remains back-
ward compatible. As long as it conforms to the C99 stan-
dard, a compiler (which translates high-level C programs
into executable code) will work with any program writ-
ten in C89. And C is unlikely to disappear.

Matlab, on the other hand, is a proprietary mathematical
programming language controlled by a single company,
MathWorks Inc. This makes it harder to share informa-
tion with colleagues not running the same software.

Academic institutions have a mission to teach technolo-
gies that are widely used in the real world so that students
have the skills that employers need. More than 90 percent
of the programs running on our desktops, from operat-
ing systems and e-mail clients to Web browsers and word
processors, are written in C or its relative, C++.

Just how widespread is C? There are many measures of
programming language popularity.
The Programming Language Popularity Web site

(www.langpop.com) and Programming Community
Index (www.tiobe.com) are two of the best known and
most authoritative statistical sources.

The Programming Community Index has been pub-
lished monthly since 2001 by Tiobe Co., a software con-
sultant. The June 2009 index indicates that Java, a lan-
guage used to program Web sites, holds the top spot with
a 20.1 percent share of the market. Next comes C at 16.8
percent, followed by C++ with 10.6 percent. Matlab
ranks 23rd, with a 0.5 percent share, and Fortran 24th,
with a 0.4 percent share. Since Java is based on simpli-
fied C language syntax, students with C programming
experience can compete for a broad range of jobs. In the
Programming Language Popularity Website, C tops the
list, while C++ is fourth. Fortran is No. 21 and Matlab
is nowhere to be seen.

C, originally invented to write the Unix operating system,
runs on all platforms, from microcontrollers and hand-held
devices to PCs and supercomputers. It is the language most
often used to write operating systems and major applica-
tions, as well as modify hardware and software. Users can
also translate most other languages into C.

C is especially useful for mechanical engineers because
it is the language of choice for hardware interfaces. Often,
the only other alternative is tedious, low-level program-
ming using an assembly language. As a hardware interface
language, C is used commonly for data acquisition and
real-time control of robots and other mechatronic sys-
tems. Many hardware and software vendors even provide
libraries of C code for hardware interfaces. C is also the
most widely used language for programming embedded
processors, which control everything from automobiles,
industrial machinery, medical equipment, and household
appliances to traffic lights, vending machines, cell phones,
and toys. Of the 9 billion microprocessors manufactured
in 2005, 8.8 billion were embedded into products.

C excels as a model programming language. It does an
excellent job of illustrating the underlying working prin-
ciples of scientific computing and disciplined software
development. Students gain valuable knowledge of such
fundamental programming concepts as data types, com-
piling, linking, optimization, and static and dynamically
shared libraries. Studying C provides a solid foundation
for students who want to learn advanced programming
skills, such as object-oriented programming in C++.

Equally important, users can either compile or interpret
a C program. Compiling translates a C program into
binary code and saves it as an executable file that runs on
a specific processor. Interpreting executes C statements
one at a time. C interpreters let students execute a sin-
gle line of statement or a script file composed of several
statements without compilation. This provides immedi-
ate feedback, and makes them powerful tools for interac-
tive classroom presentations and for learning basic pro-
gramming concepts. Some C interpreters also contain
graphical plotting and advanced numerical computing
capabilities typically found in mathematical program-
ming languages, for conveniently solving and visualizing
engineering and science problems.

Granted, C has a reputation for being difficult to learn
and even more difficult to master. Yet the language is small
enough to teach in a one-term course. Once students have
learned C, they can pick up other languages and math-
ematical programming languages without much difficulty
because all other modern languages and mathematical pro-
gramming languages borrowed heavily from C. On the
other hand, students who have learned Fortran or Matlab
will still find it difficult to learn C by themselves, especially
if they want to write serious software programs.

 // BilingUal aDvanTagEs
Teaching C by itself, however, may not be truly suffi-
cient for today’s mechanical engineers. Just as learning
foreign languages helps students understand their own
language better, learning C with other languages can
shed light on the fundamentals of computer program-
ming. Besides, some languages are more suitable for cer-
tain applications.

At the University of California, Davis, we teach C with
Matlab and provide optional introductory materials for
Fortran so students can learn Fortran on their own.

Matlab is an interpreted language, with all the flexibil-
ity that implies. It finds many applications in scientific
and engineering analysis. Like other commercial mathe-
matical programming packages, such as Mathematica
and Maple, Matlab has graphical plotting and advanced
numerical features that make it a powerful system for solv-
ing and visualizing engineering and science problems.

Matlab’s strength is its numerical computing and array
processing capability. Most students, however, take intro-
ductory programming as freshmen, before they learn line-
ar algebra, so they cannot fully appreciate the language’s
numerical power. Still, we believe that if we expose them

4 mechanical engineering | September 2009

 xmid = (xleft+xright)/2.0; /* mid point */

 fmid = func(xmid); /* f() in the mid point */

 while(fabs(fmid) > tolerance) {/* convergence criterion to terminate loop */

 /* f(xleft)*f(mid) to determine the updating of left or right point */

 if(fleft*fmid <= 0.0) { /* mid point becomes the right point */

}

 xmid = (xleft+xright)/2.0; /* mid point */

 fmid = func(xmid); /* f() in the mid point */

 while(fabs(fmid) > tolerance) {/* convergence criterion to terminate loop */

 /* f(xleft)*f(mid) to determine the updating of left or right point */

 if(fleft*fmid <= 0.0) { /* mid point becomes the right point */

 xright = xmid; /* update the right point */

 }

 xright = xmid; /* update the right point */

 }

 else { /* mid point becomes the left point */

 xleft = xmid; /* update the left point */

 fleft = fmid; /* update f(xleft) */

 }

 xmid = (xleft+xright)/2.0; /* update the mid point */

 fmid = func(xmid); /* f() in the mid point */

 }

 printf(“x = %f m, func(x) = %g\n”, xmid, fmid);

 return 0;

 else { /* mid point becomes the left point */

 xleft = xmid; /* update the left point */

 fleft = fmid; /* update f(xleft) */

 }

 xmid = (xleft+xright)/2.0; /* update the mid point */

 fmid = func(xmid); /* f() in the mid point */

 }

 printf(“x = %f m, func(x) = %g\n”, xmid, fmid);

 return 0;

}

to Matlab or similar mathematical computing environ-
ments early, students will be able to apply the knowledge
to solve complicated engineering problems when they
take advanced math and engineering courses.

Although Fortran dates back to the 1950s, it remains
one of the primary languages used by professionals in
both academia and industry, especially for such com-
putationally intensive programs as computational fluid
dynamics. It is one of the best candidates for mechanical
engineering students to compare with C.

C99 has features, such as restricted pointers, that enable
it to be optimized as efficiently as the equivalent Fortran
programs. C99 also supports the complex numbers and
variable length arrays found in Fortran that are so useful in
engineering and science applications. These changes have
led to growing use of C for numerical intensive super-
computing. The latest Fortran 2005 standard added many
new features, some of them borrowed from C, though
these broader capabilities make the language even more
difficult to cover in a single course.

 // TEaChing C anD MaTlaB
An introductory computer programming course should
focus on using computer programs to solve problems.
Our goal is to teach students the fundamentals of doing
this in C because it is widely used in engineering and
because it provides an excellent foundation for solving
problems with other programming languages.

Our introductory computer programming course at
Davis runs for one quarter, or 10 weeks. The weekly
schedule includes three one-hour lectures and a one-
hour discussion session. We offer three optional labora-
tory hours with a teaching assistant in the lab to answer
students’ questions. Although we provide open lab hours
(without a teaching assistant), most students do home-
work assignments on their own computers using free C/
C++ compilers and interpreters with graphical plotting
and advanced numerical capabilities running in Win-
dows, Mac OS X, or Linux.

This demands a lot from students. In order to cover
adequate material, we rely heavily on information tech-
nology for teaching. We use a combination of Power-
Point slides and live interactive code executed in a C/
C++ interpreter with graphical plotting and advanced
numerical capabilities for classroom presentations. Stu-
dents learn the fundamentals of disciplined software
development in C from examples that range from algo-
rithm development, flow charts, different data types,
and structured and modular programming to pseudo-
code, code reuse, coding style, on-line documentation,
and debugging.

Matlab was implemented in C and borrowed heavily from
C. Like most modern languages, it shares similar opera-
tors, expressions, repetition statements, control structures,
arrays, input and output, and functions. Because they start
with a solid foundation in C, students quickly learn to use
Matlab to solve engineering problems. We demonstrate

the strength and some unique features of Matlab by hav-
ing students use it to re-solve many of the same problems
that they solved earlier in the course in C.

We cover a lot of ground in 10 weeks. That means we
must make compromises. Due to the time constraints,
we teach students both C and Matlab, and give them
handout materials to learn Fortran as a second program-
ming language on their own. Academic institutions that
use a 15-week semester system should have enough time
to introduce Fortran in class for comparison study with
C. They may also have time to cover some of the more
difficult C/C++ features.

Since 2004, I have been teaching freshmen how to
use C and Matlab to solve engineering problems. Our
department expects students who complete the 10-week
course not only to solve problems in C, but also to
achieve greater proficiency in Matlab than those students
who learned only Matlab. We also expect students who
would like to work on Fortran projects to pick up that
language quickly on their own.

After five years teaching, we believe that we have achieved
this goal. Students demonstrate proficiency by applying C
and Matlab to projects and homework in subsequent cours-
es. They are also able to port Fortran programs used in an
upper division applied aircraft aerodynamics course to C.

They also approach the programming and mechatron-
ics aspects of mechanical engineering differently. Many
developed a keen interest in the application of infor-
mation technology to mechanical devices. Others per-
formed very well in the advanced C++ object-oriented
programming course offered primarily to computer sci-
ence and electrical engineering students.

C is one of the most popular programming languages
used in engineering and science. It is the only language
for many programming tasks. C is one of the core foun-
dations of information technology. As the pace of inte-
gration of electronic controls with mechanical devices
increases, it is more important than ever for mechanical
engineers to master this fundamental technology.

With a solid foundation in C, mechanical engineering stu-
dents are well prepared for today’s projects, which increas-
ingly integrate mechanical hardware with control software.
They have the foundation to learn more advanced and
mathematical programming languages, as well as to take
advantage of new and emerging computing paradigms. n

For more detailed information about UC Davis’ intro-
ductory computer programming course and a review
of our teaching resources, visit our Web site at http://
iel.ucdavis.edu/cfores. The site includes a textbook,
detailed lecture notes, PowerPoint lecture and discus-
sion slides, homework and solutions, and handouts for
learning Fortran and comparing it with C.

To Learn More

