
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

An embeddable mobile agent platform supporting runtime code mobility,
interaction and coordination of mobile agents and host systems

Yu-Cheng Chou, David Ko, Harry H. Cheng *

Integration Engineering Laboratory, Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616, USA

a r t i c l e i n f o

Article history:
Received 16 February 2008
Received in revised form 2 August 2009
Accepted 24 September 2009
Available online 12 October 2009

Keywords:
Mobile agent library
Mobile agent API
Embeddable IEEE FIAP standard compliant
mobile agent platform
C/C++ mobile agents
Ch, C/C++ interperter

a b s t r a c t

Agent technology is emerging as an important concept for the development of distributed complex sys-
tems. A number of mobile agent systems have been developed in the last decade. However, most of them
were developed to support only Java mobile agents. In order to provide distributed applications with code
mobility, this article presents a library, the Mobile-C library, that allows a mobile agent platform, Mobile-
C, to be embeddable in an application to support mobile C/C++ codes carried by mobile agents. Mobile-C
uses a C/C++ interpreter as its Agent Execution Engine (AEE). Through the Mobile-C library, Mobile-C can
be embedded into an application to support mobile C/C++ codes carried by mobile agents. Using mobile
C/C++ codes, it is easy to interface a variety of low-level hardware devices and legacy systems. Through
the Mobile-C library, Mobile-C can run on heterogeneous platforms with various operating systems. The
Mobile-C library has a small footprint to meet the stringent memory capacity for applications in mech-
atronic and embedded systems. The Mobile-C library contains different categories of Application Pro-
gramming Interfaces (APIs) in both binary and agent spaces to facilitate the design of mobile agent
based applications. In addition, a rich set of existing APIs for the C/C++ interpreter employed as the
AEE allows an application to have complete information and control over the mobile C/C++ codes residing
in Mobile-C. With the synchronization mechanism provided by the Mobile-C library for both binary and
agent spaces, simultaneous processes across both spaces can be coordinated to get correct runtime order
and avoid unexpected race condition. The study of performance comparisons indicates that Mobile-C is
about two times faster than JADE in agent migration. The application of the Mobile-C library is illustrated
by dynamic runtime control of a mobile robot’s behavior using mobile agents.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Agent-based computing emerged in the past decade as a prom-
ising strategy for developing distributed complex systems [1–3]. It
has been applied to a variety of distributed applications, such as
manufacturing [4–6], real-time control systems [7–9], electronic
commerce [10–12], network management [13,14], transportation
systems [15,16], information management [17,18], scientific com-
puting [19,20], health care [21] and entertainment [22]. The agent
technology can significantly enhance the design and analysis of
systems whose problem domain is geographically distributed,
and whose subsystems exist in a dynamic environment and need
to interact with each other more flexibly [23]. An agent that does
not or cannot leave the execution environment is a stationary
agent. On the other hand, a mobile agent is a software component
that can travel among different execution environments autono-
mously [24]. Mobile agents provide a unifying framework to con-
struct a variety of distributed applications. Mobile agents can be

created dynamically during runtime and dispatched to destination
systems to perform tasks with the most up-to-date code. The
mobility of mobile agents provides applications with significant
flexibility and adaptability that are both essential for satisfying
dynamically changing requirements and conditions in a distrib-
uted environment.

In the past decade, many mobile agent platforms have been
developed. Some of the well-known mobile agent platforms in-
clude Mole [25], Aglets [26], Concordia [27], D’Agents [28], Ara
[29], TACOMA [30] and JADE [31,32]. However, most of them, such
as Mole, Aglets, Concordia and JADE, were developed to support
only Java mobile agents. D’Agents supports mobile agents written
in Tcl, Scheme and Java, whereas Ara supports those written in
Tcl, C, C++ and Java. TACOMA was originally developed to support
Tcl mobile agents, and subsequently extended to support mobile
agents written in multiple languages including C, Tcl, Perl, Python
and Scheme.

The majority of mobile agent platforms in use are Java based.
However, adopting a standard language as the mobile agent code
language that provides both high-level and low-level functional-
ities is a good choice to accommodate the diversity of distributed

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.09.002

* Corresponding author. Tel.: +1 530 752 5020; fax: +1 530 752 4158.
E-mail address: hhcheng@ucdavis.edu (H.H. Cheng).

Information and Software Technology 52 (2010) 185–196

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof



Author's personal copy

applications, especially in the field of networked mechatronic and
embedded systems. C/C++ is a proper choice for such a mobile
agent code language. First, compared to other scripting languages
such as Tcl/Tk, Perl and Python, C/C++ provides more powerful
functions in terms of memory access. Second, a vast number of
existing C/C++ programs can be reused to construct mobile agent
codes. Third, C is a middle-level language with industry standards.
It can easily interface with a variety of low-level hardware devices.

Mobile-C [33–35] was originally developed as a standalone,
IEEE FIPA compliant mobile agent platform to accommodate appli-
cations where low-level hardware is involved, such as networked
mechatronic and embedded systems. Since most of the systems
are written in C/C++, Mobile-C chose C/C++ as the mobile agent
language for easy interfacing with control programs and underly-
ing hardware. Additionally, Mobile-C adopted an embeddable C/
C++ interpreter, Ch [36–38], as the Agent Execution Engine (AEE)
to support the interpretive execution of C/C++ mobile agent codes.
As opposed to a standalone mobile agent platform, the Mobile-C li-
brary was developed thereafter to make Mobile-C embeddable in
any C/C++ programs to support code mobility. The original stand-
alone Mobile-C was only supported by Linux operating systems
on general purpose computers. However, the Mobile-C library al-
lows the embeddable Mobile-C to run on heterogeneous platforms
with various operating systems. Mobile-C is now supported by
Windows, Linux, Solaris, HP-UX, FreeBSD, Mac OS X and QNX oper-
ating systems on general purpose computers and Linux operating
systems on tiny and single-board computers.

The main differences between Mobile-C and the other platforms
supporting C/C++ mobile agents, Ara and TACOMA, are as follows.
Unlike Ara and TACOMA that are not compliant to any of the two
international agent standards, the IEEE Foundation for Intelligent
Physical Agents (FIPA) [39] and the OMG Mobile Agent System
Interoperability Facility (MASIF) [40], Mobile-C is compliant to
the IEEE FIPA standard. Such a compliance ensures the interopera-
bility between a Mobile-C agent and other agents from heteroge-
neous FIPA compliant mobile agent platforms. In Ara and
TACOMA, before a C/C++ mobile agent code can be executed at a
remote host, it has to be compiled into a customized byte code
for Ara [41], and a binary code for TACOMA [42]. Conversely, a C/
C++ mobile agent code can be readily executed in Mobile-C with-
out a pre-compilation step. As a result, Mobile-C allows for execut-
ing mobile agent codes that are dynamically generated or modified
at runtime. Moreover, Mobile-C is able to dynamically respond to
changes occurring in the environment. Therefore, Mobile-C pro-
vides users with significant flexibility to facilitate the development
and implementation of mobile agent-based applications. In Ara, a
byte code generated from a C/C++ mobile agent code is received
by a remote host. In TACOMA, either a C mobile agent code or a
binary code generated from a C mobile agent code is received by
a remote host. In Mobile-C, a C/C++ mobile agent code is what a re-
mote host receives. For the situation where a C/C++ mobile agent
code is received by a remote host, the security of the remote host
can be easily maintained. Because if desired, the C/C++ mobile
agent code can be parsed and examined before it is executed. How-
ever, it is difficult to examine what is contained in a byte code or a
binary code. Therefore, Mobile-C can provide a high level of secu-
rity for remote hosts if desired.

The operating systems on general purpose computers that sup-
port Ara and/or TACOMA include Linux, Solaris, HP-UX and Free-
BSD. Besides these operating systems, Mobile-C is also supported
by other operating systems on general purpose computers such
as Windows, Mac OS X and QNX. In addition, Mobile-C also works
in tiny computers and single-board computers with supported Li-
nux operating systems. Particularly, in Mobile-C, a C/C++ mobile
agent code developed using standard C/C++ functions can be run
by the AEE across Windows and Unix-like operating systems with-

out the need to modify the mobile agent code. Therefore, Mobile-C
provides a high degree of portability for mobile agent codes.

This article presents the Mobile-C library that can embed Mo-
bile-C into any C/C++ programs to facilitate the design of mobile
agent-based applications. Mobile agents in an application can con-
trol the agent platform, its modules and other mobile agents, as
well as smoothly interface with a variety of low-level hardware de-
vices. The Mobile-C library has a small footprint to satisfy the small
memory requirement for various mechatronic and embedded sys-
tems. The interface between the binary and mobile agent spaces
has been designed and implemented. The Mobile-C functionality
in the binary space has been extended to the mobile agent space.
Flexible synchronization mechanisms have been added in both
binary and mobile agent spaces for concurrent execution and inter-
action of multiple mobile agents.

The rest of the article is organized as follows. Section 2 de-
scribes the design considerations for the Mobile-C library. Section
3 presents the architecture of the Mobile-C library with an illustra-
tion of its APIs. A proof of concept example is given in this section
as well. Section 4 describes the interface allowing for agency-to-
agent interaction through accessing the mobile agent space from
the host program space. Section 5 extends the Mobile-C function-
ality into the mobile agent space, allowing for agent-to-agency
and agent-to-agent interactions. Section 6 presents the Directory
Facilitator (DF) in Mobile-C. An example is given to demonstrate
the dynamic algorithm alteration methodology through the DF,
which provides an algorithm experimentation functionality for
computational steering. Section 7 illustrates the synchronization
support in Mobile-C. Section 8 evaluates the performance of Mo-
bile-C in terms of agent migration. Section 9 presents an applica-
tion of dynamic runtime control of a mobile robot’s behavior
with mobile agents. Section 10 summarizes the investigation that
has done.

2. Mobile-C library design

The Mobile-C library allows a mobile agent platform to be
embedded in a program to support C/C++ mobile agents. This mo-
bile agent platform is referred to as Mobile-C or the Mobile-C
agency in this article. Additionally, the host program space is de-
fined as the C/C++ binary space where a host program and the Mo-
bile-C agency reside. The mobile agent space is defined as the C/
C++ script space where a mobile agent resides.

An embeddable C/C++ interpreter, Ch [36–38], was chosen to be
the Agent Execution Engine (AEE) to run C/C++ mobile agent codes.
Using Ch as a runtime execution environment has several advanta-
ges over other alternatives. As a superset of C, all standard C func-
tions are supported by Ch. Besides, an increasing number of C/C++
toolkits and packages are available for solving complicated engi-
neering problems using Ch. Ch runs on most of the existing Win-
dows and Unix-like operating systems for general purpose
computers. It also runs on Linux operating systems for single board
computers and tiny computers such as Gumstix [35]. It is suitable
for use in a heterogeneous environment.

Since an agency is embedded in a host program to support mo-
bile agents, a host program can protect itself from malicious agents
by controlling the operation of the embedded agency and mobile
agents. The Mobile-C library was designed to provide APIs relevant
to an agency, different modules of an agency, agents, and other
functionalities of an agency. These APIs can be called in a host pro-
gram to have control over the embedded agency, different modules
of the agency, and mobile agents operating within the agency.

There are many situations that cannot be foreseen at the devel-
opment stage of a host program. A mobile agent can be dynami-
cally created to provide solutions for those unexpected scenarios

186 Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196



Author's personal copy

to enrich the functionality of a host program by supplying new or
updated services. Dynamic population and propagation are distinc-
tive and natural advantages offered by mobile agents. Host pro-
gram functionality enrichment is accomplished by providing
mobile agents with the ability to interact with the host program
space through a set of mobile agent space APIs. Therefore, the Mo-
bile-C library was also designed to extend most of the functionality
from the host program space to the mobile agent space.

For certain scientific and engineering applications, a host pro-
gram can consist of an agency and many user-defined routines to
perform a variety of complicated tasks or intensive computations.
Some resources might be shared between different agents or be-
tween agents and user-defined routines. Thus, the Mobile-C library
was also designed to support synchronization among mobile
agents as well as synchronization between mobile agents and their
host program.

One of the key features of a mobile agent is the social ability
that allows a mobile agent to interact with other agents or host
programs to accomplish its task on the user’s behalf. However,
there is generally little support to encourage interaction and coor-
dination among multiple mobile agents [43]. With the interactivity
in mind, the Mobile-C APIs were designed to fulfill agency-to-
agency, agency-to-agent, agent-to-agency and agent-to-agent
interactions.

3. Mobile-C library architecture

The functionalities of each API provided by the Mobile-C library
is described in this section. Fig. 1 shows the architecture of the Mo-
bile-C library. APIs in the Mobile-C library can be organized into
eight categories: Agency, AMS, ACC, DF, AEE, Agent, Synchroniza-
tion and Miscellaneous APIs.

3.1. Agency API

The main purpose of the Agency API is to start a Mobile-C
agency inside a host program to support C/C++ mobile agents.
When a Mobile-C agency is started, modules and data structures
maintained by the agency are initialized as well. Afterwards, APIs
in other categories can be used to access data structures associated
with different modules.

Fig. 2 shows the Mobile-C agency data structure. As shown in
Fig. 2, a Mobile-C agency maintains different threads and data
structures in the host program space. As an IEEE FIPA compliant
mobile agent platform, a Mobile-C agency comprises three FIPA
normative modules, Agent Management System (AMS), Agent
Communication Channel (ACC) and Directory Facilitator (DF).
Two additional modules, Agent Execution Engine (AEE) and Agent
Security Manager (ASM), are included in a Mobile-C agency as well.
Each module has different functionalities that are implemented as

independent threads. These threads are classified into five catego-
ries: AMS functionality threads, ACC functionality threads, DF func-
tionality threads, ASM functionality threads and AEE threads, as
shown in Fig. 2. Each AEE thread is launched for one mobile agent
by one of the AMS functionality threads.

Other representative functions of the Agency API include those
for specifying which thread needs to be active or inactive when an
agency is started, halting and resuming an agency’s operation, and
ending an agency.

3.2. AMS API

The AMS module controls the creation, registration, execution,
migration, persistence and termination of a mobile agent. It main-
tains a directory of Agent Identifiers (AIDs) for registered mobile
agents. Each mobile agent must register with the AMS module in
order to have a valid AID. The AMS API is used to instruct the
AMS module to perform operations related to the life cycle of an
agent. The representative operations include indefinitely waiting
and processing incoming agents, adding, removing, duplicating
and retrieving agents.

3.3. ACC API

The ACC module routes messages between distributed entities.
The ACC API is used to instruct the ACC module to perform opera-
tions regarding interactions between agents and agencies includ-
ing inter-agent communication and inter-agency agent migration.
The interactions can be performed through Agent Communication
Language (ACL) messages. In Mobile-C, an agent migration mes-
sage is an XML based ACL message that contains all the informa-
tion about a mobile agent, such as the name, owner, source
machine, code and data of the mobile agent. Unlike the previous
standalone Mobile-C implementation [34] that used Libxml2
[44], Mini-XML [45], a small XML parsing library, is used in the Mo-

Fig. 1. Architecture of the Mobile-C library.

Fig. 2. Mobile-C agency data structure.

Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196 187



Author's personal copy

bile-C library to parse agent migration messages so that Mobile-C
can more applicable to resource constrained applications.

3.4. DF API

The DF module provides yellow page services. Agents intended
to advertise their services should register with the DF module. Vis-
iting mobile agents can search the DF module for agents providing
the services they desire. The DF API is used to instruct the DF mod-
ule to perform operations regarding services provided by agents.
Functions of this API can be used to register and deregister a ser-
vice with the DF module, as well as search the DF module for a
service.

3.5. AEE API

The AEE serves as the execution environment for mobile agent
codes. The AEE has to be platform independent in order to support
the execution of mobile agent codes in a heterogeneous environ-
ment. There will be multiple AEEs running concurrently in a Mo-
bile-C agency to support multiple agents. Each AEE is associated
with only one agent. The AEE API is used to instruct the AEE to per-
form operations on an agent. Some important functions of the AEE
API include retrieving the AEE associated with an agent, obtaining
and setting an agent’s status, halting a running agent, and calling a
function defined in an agent. In addition, all the functions of the
Embedded Ch [46], a toolkit associated with the AEE, can be used
to develop host programs.

3.6. Agent API

The Agent API is used to obtain the information regarding an
agent. Representative functions in this API allow for retrieving an
agent by its ID or name, obtaining an agent’s ID, name, code and
data.

3.7. Synchronization API

As shown in Fig. 2, Mobile-C agency maintains a list of synchro-
nization variables that can be used with the Synchronization API to
ensure synchronization within a host program where synchroniza-
tion might be needed among agents, between agents and user-de-
fined routines, as well as among user-defined routines.

3.8. Miscellaneous API

This API currently contains functions for setting up a steerable
binary space function, retrieving a steering command sent from
the mobile agent space, and send a command to control a steerable
binary space function.

3.9. ASM module

The ASM module is responsible for maintaining security policies
for a host program. Some sample tasks of the ASM module include
identifying users, protecting host resources, authenticating and
authorizing mobile agents, and ensuring the security and integrity
of mobile agents. The protocol of the ASM module is based on the
SSH protocol [47]. Currently, this Mobile-C module provides a se-
cure transmission process for mobile agents and ACL messages
from one agency to another. Two agencies must successfully
authenticate each other before a transmission process begins. A
successful authentication establishes a trust between these two
agencies. A mobile agent or ACL message to be sent out will be
encrypted so that its integrity can be maintained upon being
received. Therefore, the ASM module helps protect against man-

in-the-middle attacks and eavesdropping. The ASM module can
be enabled or disabled during program compilation with the
Mobile-C library. There is no separate ASM API needed. For a
resource constrained application running in a secure intranet, the
ASM module can be disabled.

3.9.1. Example 1: sample application programs
The concept of embedding a Mobile-C agency into an applica-

tion to support code mobility is illustrated in this example. Pro-
gram 1 starts an agency that keeps receiving mobile agents and
executing mobile agent codes. The variable agency, of type MCA-

gency_t, is a handle that contains information about an agency.
The function MC_Initialize() takes two parameters, an integer
and the address of an MCAgencyOptions_t variable. An
MCAgencyOptions_t variable is a structure that contains infor-
mation specified by a user regarding the threads to be activated,
default agent status, and settings for the ASM module. Here, a NULL
pointer is passed to MC_Initialize() to start an agency with de-
fault settings. A local agency will be initialized to listen on port
5130. The function MC_MainLoop() makes the agency continu-
ously receive mobile agents and execute mobile agent codes. As
shown in Program 1, the function MC_End() will be called to ter-
minate the agency when MC_MainLoop() fails.

Program 2 starts an agency that sends a mobile agent to a remote
agency. In Mobile-C, a mobile agent is an ACL message in XML
format. The function MC_SendAgentMigrationMessageFile()
takes four parameters including an MCAgency_t variable, the file-
name of a mobile agent, and the host name and port number of a
remote agency. Here, MC_SendAgentMigrationMessageFile()
sends a mobile agent, saved as mobileagent_ex1.xml, to a remote
agency which runs on host iel2.engr.ucdavis.edu and listes on
port 5130. The mobile agent is shown in Program 3. The tag MOBI-
LEC_MESSAGE indicates that the following content is a Mobile-C
message. The tag MESSAGE reveals the message type through the
attribute message. Here, the message type is MOBILE_AGENT. The
tag MOBILE_AGENT indicates that the following content is a mobile
agent. The tag AGENT_DATA embraces all the information pertinent
to an agent including the name, owner, home address and tasks of
an agent. Specifically, the tag TASKS reveals the number of tasks an
agent has and the number of tasks an agent has completed via attri-
butes task and num, respectively. Here, the agent has one task
which has not been completed. Furthermore, the tag TASK reveals
information pertinent to one task of an agent, such as the ordinal
number, return variable, completeness, persistence and execution
host of the task, through different attributes. Particularly, the attri-
bute persistent specifies the persistence of an agent. This attri-
bute can be set to 1 for a persistent agent, and 0 or removed for a
non-persistent agent. Here, the agent shown in Program 3 is a per-

Program 1. The server program in Example 1.

188 Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196



Author's personal copy

sistent agent. A persistent agent will not be removed from an
agency after the agent code is executed so that the variables and
functions in the agent code can still be accessed later on. The tag
AGENT_CODE embraces a C/C++ code representing the task that an
agent will perform. In this example, after the mobile agent is
received, the encapsulated agent code will be executed to print
Hello World! to the console terminal. The agent code also defines
a function, func(), that can be called from the host program space.
The details about accessing the mobile agent space from the host
program space will be described in the next section.

4. Access mobile agent space from host program space

The ability to access the mobile agent space from the host pro-
gram space can create benefits for a host program. One of the ben-
efits is relevant to the security of a host program. As mentioned in
Section 2, a host program can protect itself from malicious agents
by controlling the operation of mobile agents. Because mobile
agents operate within an agency which is embedded in a host pro-
gram, the agency-to-agent interaction therefore plays an impor-
tant role in securing a host program. The agency-to-agent
interaction allows an agency to have complete control over a mo-
bile agent code. Therefore, through the embedded agency, a host
program can control the execution and debugging of a mobile
agent code and evaluate intermediate status or dynamic properties
of an agent by accessing variables or functions defined in the agent
code during runtime.

The Mobile-C library provides APIs to carry out such an agency-
to-agent interaction. These APIs can be called in a host program to
control not only mobile agents, but also the Mobile-C agency and
its different modules. Additionally, since Ch is adopted as the
AEE in Mobile-C, a large number of Embedded Ch functions [46]
can be readily used in the host program space to access informa-
tion existing in the mobile agent space.

The Embedded Ch toolkit reduces the complexity of heteroge-
neous development environment for both embedded scripting
and applications. With the consistent C/C++ code base, it can signif-
icantly reduce the effort in the software development and mainte-
nance. Moreover, through the Embedded Ch toolkit, C/C++
applications can be extended with all the features of Ch including
built-in string type for scripting. The pointer and time determinis-
tic nature of the C language provide a perfect interface with hard-
ware in real-time systems.

4.1. Example 2: invoke mobile agent space function from host program
space

This example illustrates how to call a function defined in the
mobile agent code by using the Mobile-C library and Embedded
Ch toolkit. The mobile agent in this example, shown in Program
3, is a persistent agent which will not be removed from the agency
after the agent code is executed. The agent code is a simple but
complete C program which also defines a function func() that is
called in the server program shown in Program 4.

In Program 4, the function MC_WaitSignal() blocks program
execution until a given signal is received. The signal MC_EXEC_A-
GENT is used to unblock program execution once the first received
agent is executed. The function MC_ResetSignal() is called to re-
sume the operation of the agency. The mobile agent is found by the
function MC_FindAgentByName(), and the AEE associated with

Program 2. The client program in Example 1.

Program 3. A mobile agent in Example 1.

Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196 189



Author's personal copy

the mobile agent is obtained by the function MC_GetAgentExe-
cEngine(). The variable returned by MC_GetAgentExecEn-
gine() is a Ch interpreter of type ChInterp_t. There are
several different methods to call functions defined in the mobile
agent space from the host program space using the Embedded Ch
toolkit. In this example, the function func() is invoked by its
name through an Embedded Ch function Ch_CallFuncByName()
to print func() is called! to the console terminal.

5. Extend Mobile-C functionality to mobile agent space

The key concepts of mobile agents are their interoperability and
autonomy. These concepts set mobile agents apart from conven-
tional objects in such a way that mobile agents should be able to
refuse an action. Therefore, mobile agents must be able to interact
with each other to decide what information to retrieve or what
physical action to take, such as shutting down an assembly line
or avoiding a collision with another robot. These interactions occur
among agents as well as between agents and host programs. These

interactions are achieved by providing mobile agents with the abil-
ity to interact with the host program space through the mobile
agent space APIs. The Mobile-C library has extended most of the
functionality from the host program space to the mobile agent
space. The mobile agent space APIs allow a mobile agent to interact
with an agency, different modules of an agency, and other agents.

Fig. 3 shows how mobile agent code interfaces with the Mobile-
C library. When the function mc_Function() is called in mobile
agent code, Ch searches the corresponding interface function
MC_Function_chdl() in the Mobile-C library, and passes argu-
ments to it by calling the function. Subsequently, the interface
function MC_Function_chdl() invokes the target function
MC_Function(), and passes the return value back to the mobile
agent space [46].

The prototypes of mobile agent space functions and a number of
enumerations, data types, and special variables are all considered
built-in in the mobile agent space as no header file or extra code
is needed to access them. They are declared using the Embedded
Ch toolkit.

6. Directory Facilitator in Mobile-C

As mentioned in Section 3, the DF in Mobile-C provides yellow
page services. Agents intended to advertise their services should
register with the DF. Visiting mobile agents can search the DF for
agents providing their desired services. The Mobile-C library pro-
vides functions to instruct the DF to perform operations including
registering and deregistering a service with the DF, as well as
searching the DF for a desired service.

For pervasive systems consisting of small devices with limited
communication and processing power, the functionality of Direc-
tory Facilitator is important. Each one of these small devices typi-
cally offers a specific service to the user, and they need to
collaborate with each other to build up more complex services.
In order to achieve this, devices should be able to dynamically dis-
cover and share their services. For example, sensors and air condi-
tioning systems in an intelligent building might interact with a
user’s PDA to automatically adapt the environment to a user’s need
or preference.

Program 4. The server program in Example 2.

Fig. 3. Interface of mobile agent code with the Mobile-C library.

190 Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196



Author's personal copy

6.1. Example 3: dynamic algorithm alteration

A simulation program typically consists of multiple functions,
each of which performs a specific computation using an algorithm.
Therefore, support of dynamic algorithm alteration allows a user to
change the implementation of functions while a simulation is in
progress. With the Mobile-C library, each function in a simulation
program can be defined in the mobile agent code and registered as
a service with the DF, so that an algorithm can be altered by replac-
ing the current service with a new one containing the modified
function implementation [48]. This section gives an example that
demonstrates how to dynamically change an algorithm in a run-
ning simulation through the Mobile-C library, which cannot be
accomplished by some commonly-used computational steering li-
braries [49–52]. In this example, there are two mobile agents sent

from a client program to the server program. The two mobile
agents have the same mobile agent code except for the difference
in the function to be registered with the DF. The programs for this
example can be downloaded from the Web [53].

As shown in Fig. 4, the server program repeatedly searches for a
service and calls a mobile agent space function that represents the
service. A Mobile-C agency is initialized as a low priority back-end
thread to receive and execute mobile agents to update the
function.

Fig. 5 illustrates the flowchart for the main function of the mo-
bile agent code. The main function first searches for a given service.
If no mobile agent has provided the service, the service provided by
the current mobile agent will be registered with the DF. On the
other hand, if an existing mobile agent is found to provide the ser-
vice, the service provided by this mobile agent will be deregistered.
Afterwards, the current mobile agent’s service will be registered
with the DF.

Fig. 4. The flowchart for the server program in Example 3.

Fig. 5. The flowchart for the main function of the mobile agent code in Example 3.
Program 5. A mobile agent that contains a global variable and defines functions to
access the global variable in Example 4.

Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196 191



Author's personal copy

7. Synchronization support in Mobile-C

In a Mobile-C agency, mobile agents are executed by indepen-
dent AEEs. A user might also need to design a multi-threaded
application where a Mobile-C agency itself is one of the many
threads that handle different tasks. The Mobile-C library supports
synchronization among mobile agents and threads. The synchroni-
zation API functions are used to protect shared resources as well as
to provide a method of deterministically timing the execution of
mobile agents and threads.

The internal implementation consists of a linked list of Portable
Operating System Interface for UNIX (POSIX) compliant synchroni-
zation variables, namely, mutexes, condition variables and sema-
phores. Each node in the linked list is a synchronization variable
which is assigned or given a unique identification number. The
API functions can be called from the binary or mobile agent space
to initialize the synchronization variables and access them by their
unique identification numbers in the list.

As opposed to traditional synchronization variables, a Mobile-C
synchronization variable is an abstract variable. Once it has been
initialized, it may be used as a mutex, condition variable, or sema-
phore. No further function calls are necessary to change a generic
synchronization variable to one of the types. However, once a syn-

chronization variable is used as a mutex, condition variable, or
semaphore, it should not be used again as a different type.

The example below demonstrates the ability of a Mobile-C mu-
tex to protect a resource that may be shared between two agents.
Any real or imaginary resource that should not be accessed simul-
taneously by more than one entity at a time should be guarded by a
mutex. The resource may be a shared variable, or something more
abstract such as control of a robot arm. If there is only one robot
arm, then only one entity, an agent in this case, should be able to
control it at a time. In the following example, the tasks of agents
include reading and writing a global variable existing in an agent
code.

7.1. Example 4: synchronization using mutex in mobile agent space

As shown in Program 5, the mobile agent mobileagent1 ini-
tializes a mutex with an ID 55 via the function mc_SyncInit()
and defines two functions, WriteData() and ReadData(), for
writing and reading a global variable, data. As shown in Program
6, the mobile agent mobileagent2 continuously performs a writ-
ing operation. The operation includes locking the mutex via the
function mc_MutexLock(), writing the global variable by calling
WriteData() through the function mc_CallAgentFunc(), and
unlocking the mutex via the function mc_MutexUnlock(). Like-
wise, as shown in Program 7, the mobile agent mobileagent3

locks the mutex, reads the global variable, and unlocks the mutex
afterwards. By using a mutex, it is guaranteed that the global var-

Program 6. A mobile agent that continuously updates a variable in Example 4.
Program 7. A mobile agent that reads a variable of another agent (Program 5) in
Example 4.

192 Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196



Author's personal copy

iable data of mobileagent1 is only accessed by one agent at a
time.

8. Performance of agent migration in Mobile-C

The agent mobility of a mobile agent platform is relevant to and
affected by the agent migration performance of that platform. The
performance of agent migration is specifically important to appli-
cations with a large number of mobile agents. A number of bench-
mark tests were proposed to evaluate the performance of agent
migration for JADE [54,31]. Therefore, this section presents perfor-
mance comparison of agent migration for Mobile-C and JADE using
three essential benchmark tests proposed for JADE. The agent
migration benchmark programs for both Mobile-C and JADE can
be downloaded from the Web [55].

Each of the three experiments simulates a relay-race. Interac-
tions between any two runner agents in the same team are accom-
plished by exchanging ACL messages. A homogeneous environment
is set up to perform the tests. The environment consists of four
identical Linux machines. Each machine has an Intel Pentium 4
processor running at 3.2 GHz and 512 Mb of RAM. All these ma-
chines are connected through a switch with a 100 Mbit/s transmis-
sion rate.

8.1. Test 1: four agent teams with different numbers of agencies

The first test is where four agent teams migrate among different
numbers of agencies. The number of agencies ranges from two to
six. For situations where there are two to four agencies, each ma-
chine has one agency running on it. For situations where there
are five and six agencies, there are two machines that have two
agencies running on them. The migration routes for five and six
agencies are set up in a way that no agents will migrate between
two agencies running on the same machine.

Each team has one trigger agent and the same number of runner
agents as that of agencies. For each team, at the beginning, each
runner agent stands by on each agency. The trigger agent is then
sent to the first agency to signal the runner agent to start the re-
lay-race. The trigger agent becomes another runner agent once it
signals the runner agent to depart from the first agency. In order
to make all the runner agents leave the first agency almost simul-
taneously, a trigger agent does not signal its runner agent until all
the other trigger agents arrive the first agency. Each team is con-

sidered to complete one lap when the runner agent on the last
agency arrives the first agency. A total of five laps need to be com-
pleted by each team. The moment when all the trigger agents ar-
rive the first agency to start the first lap is recorded as the start
time. The moment when all the runner agents on the last agency
arrive the first agency to complete the fifth lap is recorded as the
stop time. A migration time is calculated as the interval between
the start time and stop time.

Fig. 6 shows the migration times of Mobile-C and JADE for test
1. Each migration time is obtained by averaging 20 migration re-
sults. The migration times of Mobile-C are 716.5, 1076.4,
1417.85, 1716.25 and 2064.75 milliseconds for two, three, four,
five and six agencies, respectively. Likewise, the migration times
of JADE are 1684, 2071.5, 2533.5, 2797.5 and 2064.75 millisec-
onds for two, three, four, five, and six agencies, respectively. There-
fore, the migration times of Mobile-C are about 42.55%, 51.96%,
55.96%, 61.35% and 63.79% of the corresponding ones of JADE
for two to six agencies. The results also show that the performance
of Mobile-C is more linear than JADE.

8.2. Test 2: four agencies with different numbers of agent teams

The second test is where different numbers of agent teams mi-
grate among four agencies. The number of agent teams ranges from
one to six. Each machine has one agency running on it. Each team
has one trigger agent and four runner agents. The methods for
starting the relay-race and calculating a migration time are the
same as those in test 1.

Fig. 7 shows the migration times of Mobile-C and JADE for test
2. Each migration time is obtained by averaging twenty migration
results. The migration times of Mobile-C are calculated to be
34.61%, 45.24%, 50.02%, 57.73%, 58.9% and 48.94% of the corre-
sponding ones of JADE for one to six agent teams.

8.3. Test 3: four agencies with large numbers of agent teams

The third test is the same as test 2 except that large num-
bers of agent teams are involved in the relay-race. The numbers
of agent teams in test 3 are 20, 40, 60, 80 and 100. Each ma-
chine has one agency running on it. Each team has one trigger
agent and four runner agents. The methods for starting the re-
lay-race and calculating a migration time are the same as those
in test 1.

Fig. 6. Migration times for four agent teams with different number of agencies. Fig. 7. Migration times for different numbers of agent teams with four agencies.

Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196 193



Author's personal copy

Fig. 8 shows the migration times of Mobile-C and JADE for test
3. Each migration time is obtained by averaging twenty migration
results. The migration times of Mobile-C are about 62.46%, 69.87%,
71.8%, 74.01% and 77.82% of the corresponding ones of JADE for
20 to 100 agent teams.

As shown in Figs. 6–8, the performance of agent migration in
Mobile-C is better than that in JADE for different numbers of agen-
cies and different numbers of agent teams in a homogeneous envi-
ronment consisting of networked Linux platforms.

9. Application: mobile agent-based dynamic runtime behavior
control for a mobile robot

Robots are growing in complexity and their use in industry is
becoming more widespread. One major use of robots has been in
the automation of mass production industries, where the same,
definable tasks must be performed repeatedly in exactly the same
fashion. Robots are appropriate for such tasks because the tasks
can be accurately defined and performed the same every time, with
little need for feedback to perform the same process. Mobile robots
are increasingly being deployed to perform tasks that are unpleas-
ant or dangerous for human beings, for instance, bomb disposal,
space or undersea exploration, mining and cleaning of toxic waste.
Uncertain and unforeseen events are very likely to occur in those
unstructured environments. A mobile robot often cannot be pre-
programmed to handle those uncertainties. Mobile agents allow
mobile robots to rapidly respond to unanticipated events. With
the Mobile-C library, which uses Ch as the AEE, a robot control pro-
gram can be directly sent to a mobile robot for execution.

The use of the Mobile-C library to control and change a mobile
robot’s behavior on the fly has been validated through a real-world
experiment with a K-Team Khepera III mobile robot [56]. The Khe-
pera III mobile robot is equipped with the KoreBot board, an ARM
based computer, in this experiment. The KoreBot board has 64
Mbytes of RAM and an embedded Linux operating system which
provides a standard GNU C/C++ environment for the development
of applications using the Mobile-C library. Through the KoreBot
board, the Khepera III mobile robot is also able to host a standard
CompactFlash extension card supporting Wi-Fi, Bluetooth, or extra
storage space. The Khepera III mobile robot base includes nine
infrared sensors for obstacle detection and five ultrasonic sensors
for long range object detection.

In this experiment, a program with an embedded agency is run-
ning in the mobile robot. Agent service_provider_1 containing

five functions is first sent to the robot to register those functions as
services with the DF. Agent mobagent1 is then sent to the robot,
triggering the registered services to make the robot avoid obsta-
cles. The service that leads to this obstacle avoidance behavior is
represented and provided by function RobotBehaviour(). The
implementation of this function is based on the Braitenberg obsta-
cle avoidance algorithm [57]. The experimental environment for
the Khepera III robot is a square area formed by four cardboard
pieces with two cups in it as obstacles, as shown in Fig. 9. There-
fore, the mobile robot will wander through the field avoiding the
walls and cups.

While the mobile robot is wandering through the field and
avoiding obstacles, agent service_provider_2 carrying another
RobotBehaviour service is sent to the robot. The intention of
sending this agent is to change the robot behavior on the fly. There-
fore, agent service_provider_2 deregisters the RobotBehav-

iour service provided by agent service_provider_1 and
registers its own RobotBehaviour service with the DF, according
to the methodology illustrated in Section 6.

The second RobotBehaviour service will cause the robot to
follow a moving object. Therefore, once agent service_pro-
vider_2 is sent to the robot, the walls and one of the cups are re-
moved. The remaining cup is dragged by a hand around the robot
for it to follow [58]. The object following behavior is implemented
by modifying the Braitenberg obstacle avoidance algorithm. The
sensor weights of the Braitenberg obstacle avoidance algorithm
are swapped to drive the opposite motor rather than the one orig-
inally specified. Also, the weighted sensor values, which are di-
rectly associated with the distance between the robot and the
cup, are negated and then summed up to determine the speed of
each motor. These modifications provide the opposite effect of
obstacle avoidance by making the robot move towards the cup.
In addition, the speed limit is set so that the robot will not bump
into the followed target. Therefore, the robot will follow the mov-
ing cup until it reaches the speed limit, for either the left or right
motor, at which time it will stop.

The program flowchart of agent mobagent1 is identical to Fig. 4
for the part regarding RobotBehaviour service. Therefore, the
mobile robot behavior is changed seamlessly on the fly without
the need to stop and modify the running agent mobagent1. Be-
sides, because agents service_provider_1 and service_pro-
vider_2 are both persistent agents, the deregistered
RobotBehaviour() service that belongs to agent service_pro-
vider_1 still exists inside the agency that runs in the robot. Thus,
if needed, the deregistered RobotBehaviour() service that al-
lows for obstacle avoidance can be easily registered with the DF

Fig. 8. Migration times for different large numbers of agent teams with four
agencies.

Fig. 9. An experimental environment for Khepera III mobile robot to perform
obstacle avoidance.

194 Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196



Author's personal copy

again through a mobile agent to replace the current RobotBehav-
iour() service.

Using the Mobile-C library, robot behaviors can be easily mod-
ified by simply sending over a new mobile agent to the mobile ro-
bot. The application programs described in this section can be
downloaded from the Web [58].

10. Conclusions

The design, implementation and application of the Mobile-C li-
brary have been presented in this paper. Using the Mobile-C li-
brary, an IEEE FIPA compliant mobile agent platform can be
embedded in an application to support C/C++ mobile agents.
Although it is a general purpose mobile agent platform, Mobile-C
is especially developed for resource constrained applications in
mechatronic and embedded systems. The Mobile-C library has a
small footprint and is supported in multiple platforms. The Mo-
bile-C APIs in the binary space along with a large number of the
Embedded Ch APIs provide a rich interface for agency-to-agent
interaction and allow a host program to have complete control
over the execution and bebugging of the mobile C/C++ code carried
by mobile agents. A mobile agent can be dynamically created to
provide solutions for those situations that are not anticipated at
the development stage of a host program. The additional function-
ality of the host program is achieved by using mobile agents which
can interact with the host program through a set of Mobile-C APIs
in the agent space. The Directory Facilitator of Mobile-C provides a
powerful algorithm experimentation capability for computational
steering that can dynamically change an algorithm in a running
simulation, which cannot be accomplished by other computational
steering libraries. The Mobile-C library supports synchronization
among mobile agents and threads. The synchronization functions
protect shared resources and provide a way of deterministically
timing the execution of mobile agents and threads. A set of agent
migration tests reveals that the performance of agent migration
in Mobile-C is about two times faster than JADE for different num-
bers of agencies and different numbers of agent teams. A dynamic
runtime control of a mobile robot’s behavior demonstrates the po-
tential applications of the Mobile-C library in a wide variety of
mechatronic and embedded systems.

References

[1] F. Zambonelli, H.V.D. Parunak, Signs of a revolution in computer science and
software engineering, in: Engineering Societies in the Agents World III: Third
International Workshop (Lecture Notes in Computer Science), vol. 2577, 2003,
pp. 13–28.

[2] N.R. Jennings, An agent-based approach for building complex software systems
– why agent-oriented approaches are well suited for developing complex,
Distributed Systems. Communications of the ACM 44 (4) (2001) 35–41.

[3] M. Wooldridge, P. Ciancarini, Agent-oriented software engineering: the state of
the art, in: Proceedings of Agent-Oriented Software Engineering: The First
International Workshop (Lecture Notes in Computer Science), vol. 1957, 2001,
pp. 1–28.

[4] W. Shen, D. Xue, D.H. Norrie, An agent-based manufacturing enterprise
infrastructure for distributed integrated intelligent manufacturing systems, in:
Proceedings of the 3rd International Conference on the Practical Applications
of Agents and Multi-Agent Systems (PAAM-98), London, UK, 1998, pp. 533–
548.

[5] H. Wada, S. Okada, An autonomous agent approach for manufacturing
execution control systems, Integrated Computer-Aided Engineering 9 (3)
(2002) 251–262.

[6] H.V.D. Parunak, A.D. Baker, S.J. Clark, The AARIA agent architecture: from
manufacturing requirements to agent-based system design, Integrated
Computer-Aided Engineering 8 (1) (2001) 45–58.

[7] S.Y. Eo, T.S. Chang, D.G. Shin, E.S. Yoon, Cooperative problem solving in
diagnostic agents for chemical processes, Computers and Chemical
Engineering 24 (2–7) (2000) 729–734.

[8] N.R. Jennings, S. Bussmann, Agent-based control systems – why are they suited
to engineering complex systems?, IEEE Control Systems Magazine 23 (3)
(2003) 61–73

[9] R.W. Brennan, M. Fletcher, D.H. Norrie, An agent-based approach to
reconfiguration of real-time distributed control systems, IEEE Transactions
on Robotics and Automation 18 (4) (2002) 444–451.

[10] M. Yokoo, S. Fujita, Trends of internet auctions and agent-mediated web
commerce, New Generation Computing 19 (4) (2001) 369–388.

[11] T. Sandholm, eMediator: a next generation electronic commerce server,
Computational Intelligence 18 (4) (2002) 656–676.

[12] S.P.M. Choi, J. Liu, S. Chan, A genetic agent-based negotiation system,
Computer Networks: The International Journal of Computer and
Telecommunications Networking 37 (2) (2001) 195–204.

[13] W.E. Chen, C. Hu, A mobile agent-based active network architecture for
intelligent network control, Information Sciences 141 (1–2) (2002) 3–35.

[14] L. Chou, K. Shen, K. Tang, C. Kao, Implementation of mobile-agent-based
network management systems for national broadband experimental networks
in Taiwan, Holonic and Multi-Agent Systems for Manufacturing (Lecture Notes
in Computer Science) 2744 (2003) 280–289.

[15] F. Logi, S.G. Ritchie, A multi-agent architecture for cooperative inter-
jurisdictional traffic congestion management, Transportation Research Part
C—Emerging Technologies 10 (5–6) (2002) 507–527.

[16] J.Z. Hernandez, S. Ossowski, A. Garcia-Serrano, Multiagent architectures for
intelligent traffic management systems, Transportation Research Part C—
Emerging Technologies 10 (5–6) (2002) 473–506.

[17] K. Stathis, O. DeBruijn, S. Macedo, Living memory: agent-based information
management for connected local communities, Interacting with Computers 14
(6) (2002) 663–688.

[18] H. Tu, J. Hsiung, An architecture and category knowledge for intelligent
information retrieval agents, Decision Support Systems 28 (3) (2000) 255–268.

[19] L. Boloni, D.C. Marinescu, J.R. Rice, P. Tsompanopoulou, E.A. Vavalis, Agent
based scientific simulation and modeling, Concurrency Practice and
Experience 12 (9) (2000) 845–861.

[20] H. Casanova, J. Dongarra, Using agent-based software for scientific computing
in the netsolve system, Parallel Computing 24 (12–13) (1998) 1777–1790.

[21] J. Huang, N.R. Jennings, J. Fox, Agent-based approach to health care
management, Applied Artificial Intelligence 9 (4) (1995) 401–420.

[22] I. Noda, P. Stone, The RoboCup soccer server and CMUnited clients:
implemented infrastructure for MAS research, Autonomous Agents and
Multi-Agent Systems 7 (1–2) (2003) 101–120.

[23] J.L. Adler, V.J. Blue, A cooperative multi-agent transportation management and
route guidance system, Research Part C—Emerging Technologies 10 (5–6)
(2002) 433–454.

[24] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility, IEEE
Transactions on Software Engineering 24 (5) (1998) 342–361.

[25] J. Baumann, F. Hohl, K. Rothermel, M. Strasser, W. Theilmann, MOLE: a mobile
agent system, Software-Practice and Experience 32 (6) (2002) 575–603.

[26] D.B. Lange, M. Oshima, Programming and Deploying Java Mobile Agents with
Aglets, Addison-Wesley, MA, 1998.

[27] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet, Concordia: an
infrastructure for collaborating mobile agents, in: Proceedings of the 1st
International Workshop on Mobile Agents (MA’97, Lecture Notes in Computer
Science), vol. 1219, 1997, pp. 86–97.

[28] R.S. Gray, G. Cybenko, D. Kotz, R.A. Peterson, D. Rus, D’Agents: applications and
performance of a mobile–agent system, Software-Practice and Experience 32
(6) (2002) 543–573.

[29] H. Peine, Application and programming experience with the ara mobile agent
system, Software-Practice and Experience 32 (6) (2002) 515–541.

[30] D. Johnansen, K.J. Lauvset, R. van Renesse, F.B. Schneider, N.P. Sudmann, K.
Jacobsen, A TACOMA retrospective, Software-Practice and Experience 32 (6)
(2002) 605–619.

[31] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, JADE: a software framework for
developing multi-agent applications. Lessons learned, Information and
Software Technology 50 (1–2) (2008) 10–21.

[32] JADE - Java Agent Development Framework. <http://jade.tilab.com/>.
[33] B. Chen and H.H. Cheng, A run-time support environment for mobile agents,

in: Proceeding of ASME/IEEE International Conference on Mechatronic and
Embedded Systems and Applications, No. DETC2005-85389, Long Beach,
California, (September) 2005.

[34] B. Chen, D. Linz, H.H. Cheng, XML-based agent communication, migration and
computation in mobile agent systems, Journal of Systems and Software 81 (8)
(2008) 1364–1376.

[35] Mobile-C: A Multi-Agent Platform for Mobile C/C++ Code. <http://
www.mobilec.org> (accessed 1.08.09).

[36] H.H. Cheng, Scientific computing in the Ch programming language, Scientific
Programming 2 (3) (1993) 49–75.

[37] H.H. Cheng, Ch: A C/C++ interpreter for script computing, C/C++ User’s Journal
24 (1) (2006) 6–12.

[38] H.H. Cheng, Ch — an Embeddable C/C++ Interpreter. <http://
www.softintegration.com> (accessed 15.04.09).

[39] FIPA: The Foundation for Intelligent Physical Agents. <http://www.fipa.org/>
(accessed 29.10.08).

[40] Object Management Group, Mobile Agent System Interoperability Facilities
Specification. <http://www.omg.org/docs/orbos/97-10-05.pdf>.

[41] MACE – Mobile Agent Code Environment. <http://wwwagss.informatik.uni-
kl.de/Projekte/Ara/mace.html> (accessed 10.08.04).

[42] N.P. Sudmann, D. Johansen, Adding mobility to non-mobile web robots, in:
Proceedings of the IEEE ICDCS00 Workshop on Knowledge Discovery and Data
Mining in the World-Wide Web, Taipei, Taiwan, 2000, pp. 73–79.

Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196 195



Author's personal copy

[43] D.L. Martin, A.J. Cheyer, D.B. Moran, The open agent architecture: a framework
for building distributed software systems, Applied Artificial Intelligence 13 (1–
2) (1999) 91–128.

[44] The XML C parser and toolkit of Gnome. <http://xmlsoft.org/index.html>.
[45] Mini-XML Home Page. <http://www.easysw.com/~mike/mxml/>.
[46] Embedded Ch, SoftIntegration, Inc. <http://www.softintegration.com/

products/sdk/embedded_ch/> (accessed 15.04.09).
[47] D.J. Barret, R.E. Silverman, R.G. Byrnes, SSH: The Secure Shell (The Definitive

Guide), second ed., O’Reilly, 2005.
[48] Y.-C. Chou, D. Ko, H.H. Cheng, Mobile agent-based computational steering for

distributed applications, Concurrency and Computation: Practice and
Experience (2009), doi:10.1002/cpe.1458.

[49] J.A. Kohl, T. Wilde, D.E. Bernholdt, CUMULVS: interactive with high-
performance scientific simulations for visualization, steering and fault
tolerance, The International Journal of High Performance Computing
Applications 20 (2) (2006) 255–285.

[50] S.M. Pickles, R. Haines, R.L. Pinning, A.R. Porter, A practical toolkit for com-
putational steering, Philosophical Transactions of the Royal Society A—Mathe-
matical, Physical and Engineering Sciences 363 (1833) (2005) 1843–1853.

[51] A. Modi, N. Sezer-Uzol, L.N. Long, P.E. Plassmann, Scalable computational
steering for visualization/control of large-scale fluid dynamics simulations,
Journal of Aircraft 42 (4) (2005) 963–975.

[52] K. Brodlie, J. Wood, D. Duce, M. Sagar, gViz: visualization and computational
steering on the grid, in: Proceedings of the UK e-Science All Hands Meeting,
Nottingham, UK, 2004, pp. 54–60.

[53] Mobile Agent-Based Computational Steering for Distributed Applications.
<http://www.mobilec.org/apps/csteering/> (accessed 1.08.09).

[54] K. Chmiel, M. Gawineck, P. Kaczmarek, M. Szymczak, M. Paprzycki,
Efficiency of JADE agent platform, Scientific Programming 13 (2) (2005)
159–172.

[55] Mobile-C: Performance Analysis. <http://www.mobilec.org/performance.php>
(accessed 1.08.09).

[56] K-TEAM Corporation. <http://www.k-team.com/> (accessed 1.08.09).
[57] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT Press,

Cambridge, MA, 1984.
[58] Mobile Agent-Based Control of a Khepera III Robot using Mobile-C. <http://

www.mobilec.org/apps/khepera/>.

196 Y.-C. Chou et al. / Information and Software Technology 52 (2010) 185–196


