
Teaching Computer-Aided
Mechanism Design and
Analysis Using a High-Level
Mechanism Toolkit

MATT CAMPBELL, HARRY H. CHENG

Integration Engineering Laboratory, Department of Mechanical and Aeronautical Engineering, University of California,

Davis, California 95616

Received 19 July 2005; accepted 21 August 2006

ABSTRACT: A pedagogically effective teaching strategy that integrates computer-aided

design and programming into a course on mechanism analysis and design is presented.

Mechanism analysis is enhanced when coupled with computer programming that allows

students to find solutions to more complex systems than would otherwise be possible. Web-

based distance learning is part of the class and students also learn how to create these kinds of

materials themselves. Students can better understand the course material through an

integrated computing environment. By solving mechanism design problems in C/Cþþ, the

programming skills gained in the course are widely applicable in other areas of engineering.

Ch, a C/Cþþ interpreter, is used to incorporate programming and mechanism design because

of its high-level numerical and graphical plotting capabilities, scripting capability, and a

mechanism toolkit with easy and quick animation. A student project is presented as an

example to show how computer programming is integrated for effective learning. This teaching

strategy has been actively used at the University of California, Davis for several years in an

undergraduate course in computer-aided mechanism design and has been adopted by other

universities as well. � 2007 Wiley Periodicals, Inc. Comput Appl Eng Educ 15: 277�288, 2007; Published

online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20156

Keywords: computer-aided mechanism design; C/Cþþ interpreter; Ch; Web-based design

INTRODUCTION

Mechanism design is a basic course taught to most

mechanical engineering students that covers various

planar linkages. Starting with the theory behind them,

students learn the equations governing their motions,

use these equations to analyze different types of

mechanisms, and eventually move towards solving

design problems. In most cases, simple loop closure

equations are used to solve for link positions at a

given time. By taking the derivative of the loop

closure equations, the velocities and accelerations can

be found. With accelerations, Newton’s second law
Correspondence to H. H. Cheng (hhcheng@ucdavis.edu).

� 2007 Wiley Periodicals Inc.

277



can be used to find the force acting between the

links thus completing the dynamic analysis of the

mechanism. A computer-based approach to solve

these equations becomes necessary as the shear

number of equations can grow quite large.

There are many programs available to engineers

that aid the design process. Some examples are

Automated Dynamic Analysis of Mechanical Systems

(ADAMS) and Working Model by MSC Software,

complete analysis solutions for many types of

problems or systems [1]; Synthetica, a spatial mecha-

nism design package [2]; WATT by Heron [3], and

SAM (Simulation and Analysis of Mechanisms) by

Artas [4], used for the synthesis and analysis of planar

mechanisms. With these types of GUI driven

programs, users are required to learn the specifics of

these program interfaces. Also, in the process of using

such a software package, the equations are hidden

from the user. All that is seen is the input and

output. This is appropriate for many applications. For

example in drafting or 3D solid modeling where much

of the computation is graphical in nature. But in a

learning environment, when dealing with mechanical

design and analysis, hiding the equations from the

students might keep them from learning the entire

design process happening within the software. In most

applications, it is beneficial for a mechanical designer

to have a feel for the equations so that problems that

invariably crop up are easier to troubleshoot. This is

not to say that mechanism design softwares are not

useful. They can give students an idea of different

types or ranges of mechanisms, what they might be

useful for, and an appreciation of the physical model

[5]. It becomes a starting point for a class in

mechanism design. Then students can move forward,

analyzing mechanisms and working on mechanism

designs themselves.

To strike a balance between the pencil and

paper approach, which is burdensome due to repeated

computation, and using purely GUI-based software

that is often time consuming to learn with many

unnecessary features, a pedagogically effective pro-

gramming environment has been developed and used

for teaching and teaching mechanism design and

analysis [6]. The teaching strategy presented in

reference [6] is based on low-level C programming.

In this article, the integration of high-level program-

ming for teaching mechanism analysis and design

is described. Using the basics of object-oriented

programming, it is easier to obtain graphical output,

animation, and analytical results using built-in

function libraries. Students can write very simple

programs, about a half dozen lines, that can animate

the mechanism and produce some graphs to give them

an idea of how different mechanisms function. Once

those basics are learned, the programs can be

modified to perform more complicated analysis. The

final goal would be for students to create a library of

functions to perform analysis on their own and even

using a Web browser to interface with these libraries

for mechanism design and analysis.

In this article, a pedagogically effective method

with computer programming to teach mechanism

analysis and design is presented. Several advantages

for this approach from the teaching standpoint are

detailed, as are many of the benefits for including

programming in the curriculum. Also, an argument for

adding Web-based computing on a basic level is

made. Ch [7�9], a C/Cþþ interpreter, and its

Mechanism Toolkit [10] are presented as teaching

tools that will easily enable the computer-aided

approach to be combined with the traditional

materials. A student project is presented to show

how a Cþþ class is developed to perform mechanism

analysis. The program is then extended to interface

with a Web server so that analysis and animation can

be performed through a Web browser interactively.

The ideas presented are applicable to teaching other

courses in engineering.

TEACHING MECHANISM DESIGN
AND ANALYSIS WITH
COMPUTER PROGRAMMING

An ideal teaching environment would allow students

to see a variety of mechanisms and reduce the

computational complexity while still giving them

access to the pertinent equations. Furthermore,

students should be allowed to plug in their own

equations to see how well they work within the

framework of the software. With this approach, the

theory taught can be applied in design and analysis.

Students can even write their own programs. This

allows them to explore different aspects of the design

process without the need for repetitive computations.

The translation of formulas and equations to analysis

software is transparent and nothing is hidden. The

program will most likely be specialized for one set of

equations or type of mechanism.

The process of creating the program, however,

is also a valuable learning experience. Looking at the

numerical methods for solving equations from a

data handling perspective can be helpful. It forces

students to think about the order of operations, what

the necessary pieces of information are, and where to

begin when starting a new design. This principle is

also applicable to other areas of engineering as well.

278 CAMPBELL AND CHENG



Students will appreciate and better understand

the comprehensive commercially available software

packages. They will seem less like a black box once

students have some experience designing their own

software [6].

Having students integrate the necessary equations

into their own program works toward improving both

mechanical analysis skills and the ability to see a path

to the solution of a set of equations. Coding the

equations reinforces the theory. It helps students

remember, not only what the equations are, but how to

go about solving them because they literally need to

plug one equation into the next. Follow-on courses in

mechanisms may tackle more difficult design tasks,

but because of the framework for analysis set up

through this technique, more advanced analysis has a

firm foundation. By having a solid starting point,

adding functionality and complexity to mechanism

design problems becomes much easier.

It is important for students in mechanical

engineering to master some basic programming skills.

Programming, in general, can be applied in all areas of

engineering to solve many different problems. Basic

programming skills can be taught quickly and utilized

in combination with the course work. Programming is

often a prerequisite in many engineering curriculums.

To make these skills as widely applicable as possible,

standard programming languages are the best

choice to teach students who have not had a lot of

programming experience. By selecting a commonly

used programming language, instead of a commercial

software package, the computing skills learned are not

limited to one program and time is not wasted

traversing an unfamiliar interface. There is no

guarantee that a particular piece of software will be

used at the company where the student ends up

working, no matter how popular it is.

Once the student has a handle on some program-

ming basics, they can begin to build software by

starting with the simplest part: just solving for the

position of the mechanism. From here a building

block approach can be used to add different parts of

the analysis as they are learned in class. Functions, as

the blocks, reused with minor changes to the

equations at their core, make it easy to add velocity

and acceleration solving capability to an existing

program. As the class progresses, students will learn

more about mechanism analysis and can add to their

own functions to analyze what it is that they just

learned. In this case, the programs that the students

create mirror the material covered in class and avoids

being too complex in the beginning. This allows

students to add just the functionality that they want or

need to the program, expanding it with their knowl-

edge in the subject. Because they are building each

part, they can understand how it works [6]. Fixing

errors in the calculations when they come up, turns out

to be a part of the learning process. When using

commercial software packages, one bad habit that is

developed is the innate trust in the results. The student

should feel the need to double check the results and

not just accept them as a fact. One of the desired

outcomes of doing some or all of the programming

themselves, is a routine of using test cases to verify

results.

The programming does not need to be complex

with fancy user interfaces or lots of unnecessary

options. Simple function driven programs with

a minimum of error checking can accomplish the

desired goal. This relieves students of the burden of

having to put a multitude of features into a program.

They can make it interactive, where values used for

the calculations are provided at run time, or assign the

values to variables before program execution.

WEB-BASED DISTANCE LEARNING
AND INFORMATION SHARING

Beyond showing examples on the blackboard or on

paper, having a way for students to interact with the

subject matter is always preferable. Interaction and

collaboration are becoming more common in learn-

ing. The Web is a natural choice to implement these

ideas. Being platform and location independent, the

Web allows distance learning where all that is needed

is an Internet connection. As most students use the

Web nowadays for a multitude of tasks related to

school activities, it seems showing them how to make

the Web a truly interactive learning tool makes sense.

The creation of examples aids in the basic

understanding of the subject at hand. Mechanisms

come in a wide variety of types and classes.

Demonstrating all of these physically would be quite

difficult. Software provides an easy way for students

to see different examples and how they could

ultimately be utilized. Again, this can be done with

commercially available software, but it becomes

necessary for each student to run his/her own copy

of that software. Also, picking which software bundle

becomes an issue because they all invariably have

pros and cons. The Web can be used with some simple

tools to provide interactive mechanism examples that

students can explore on their own [11�13]. Much of

this has already been done with the Ch Mechanism

Toolkit, as shown in the next section. By using this set

of high-level, simple tools, it provides a means for

students to turn around and create something similar

TEACHING COMPUTER-AIDED MECHANISM DESIGN 279



by themselves. Most other software packages only

let students see what others have done. It is more

desirable to provide a means for students to create

their own tools that can then be shared with others.

HyperText Markup Language (HTML) already

provides the basic ability to create interaction. This

can be done utilizing Common Gateway Interface

(CGI) [14,15]. CGI can get user input via a fill-out

form on the Web browser and pass it along to the

program running on the Web server that will use it to

perform the necessary calculations. The results can

then be written into an HTML file by the same

program doing the calculations and sent back to the

user. HTML can be used in a very simple way that

anyone with some prior programming experience can

pick up with just some introductory material and a few

examples. With a few basic commands in HTML and

CGI, a Web page can be created that allows students to

add a Web User Interface (WUI) to the program. The

nature of the Web and its global accessibility then

translates into collaboration between students, allow-

ing them to share their work with others and work

together. By providing an interface that is both easy to

understand and to share, students can help each other

to increase their level of understanding of the course

material.

DESIGN AND ANALYSIS USING
Ch MECHANISM TOOLKIT

To aid students starting out in a mechanism design

class, Ch Mechanism Toolkit provides functions and

classes that help students transition between strictly

theory oriented coursework and example or applica-

tion inclusive learning. This toolkit comprises several

Cþþ classes with functions for designing and

analyzing several of the most common planar linkages

taught in a mechanism design course. Students can

use these classes to write small programs, for

example, half a dozen lines, which solve the equations

of motion for the mechanisms and provide visual

feedback in the form of graphs and animation. Beyond

simply solving the types of mechanisms included in

the toolkit, it is possible to copy and modify the source

code for building a new program or class that would

analyze different mechanisms.

Ch Language Environment

Ch is a C/Cþþ interpreter that encompasses ANSI C

with extensions to make it more useful in an

engineering design environment [7�9]. It can be used

to run functions or single lines of C code interactively

from the command line. It is an interpreter and

therefore runs scripts written in C/Cþþ. Object-

oriented programming is also possible with Ch as it

supports classes in Cþþ bringing along many of the

advantages that come with it. What really boosts C’s

capabilities in an engineering environment is its

graphical plotting and numerical computing func-

tions. Among other extensions, Ch includes complex

numbers and computational arrays as built-in data

types. A couple of the benefits they bring are that

linear algebra computations, such as array multiplica-

tion, no longer require loops, and standard math func-

tions can use these types without special handling.

This is only a brief example of many built-in numer-

ical functions in Ch. This makes the process of coding

computations in Ch much easier while still allowing

the use of the standard language as a whole. A plotting

class is also a part of Ch to create visual data output.

When combined with computational arrays, getting

plots can be as easy as one function call [8].

The fact that Ch is interpretive has two major

consequences when dealing with mechanism design

and Web-based interfaces. First, programs do not need

to be compiled to run. This is especially attractive in a

learning environment where students do not want

to spend their time in the tedious compiling and

debugging cycle. Making changes and seeing the

outcome is a much faster process. Second, Ch allows

scripting which in turn enables CGI to work effort-

lessly inside what is essentially a C program [15,16].

Ch is a platform that students can use with a minimum

of programming, but still provides a complete set of

tools to create useful analysis programs that can be

used over the Web [13,17,18].

Mechanism Toolkit

Included in the Ch Mechanism Toolkit are classes that

can be used to analyze several types of linkages [10].

These include CFourbar, CCrankSlider, CGeared-

Fivebar, CFourbarSlider, CStevSixbarI, CStevSix-

barIII, CWattSixbarI, CWattSixbarII, and CCam,

for analyzing fourbar, slider-crank, geared fivebar,

fourbar-slider, Stephenson sixbar (I & III), Watt sixbar

(I & II) linkages, and cam follower systems,

respectively. To use the Ch Mechanism Toolkit and

examine its open source implementation, students just

need some basic knowledge about mechanisms and

computer programming. The interface to the toolkit is

a set of member functions used to set the geometry

and state of the particular mechanism and to perform

the analysis desired. Along with the linkage param-

eters, variables of the appropriate data type are

defined and used to return the computational results

back to the calling program. From there, numerical or

280 CAMPBELL AND CHENG



graphical results can be obtained with a few function

calls. There are also open source programs available

for kinematic synthesis [19] based on Ch and its

Mechanism Toolkit.

Lots of common types of mechanisms can use the

above classes as a basis for their analysis. For

example, straight-line linkages have many useful

applications and quite a few types are just a specific

fourbar linkage configuration. Shown in Figure 1 is an

example of a Hoekens straight-line linkage. This

animation is done using the CFourbar class through

three function calls. The animation can also be done

through a Web browser without any programming. By

starting out using the Mechanism Toolkit, studying

various types of planar linkages can be done quickly

with the added benefit of the visual feedback.

Position, Velocity, and Acceleration Analysis

As with most mechanism design classes, the usual

starting point is position analysis. The system can be

defined by link lengths and ground link position.

Given the angle of the input link, the state of the entire

mechanism can be determined. The velocity of the

links can be found if the input link angular velocity is

defined. Similarly, accelerations for the mechanism

can be found.

Dynamic Analysis

Even dynamic analysis of these mechanisms is possible

with a few function calls. The additional pieces of

information needed are the masses, center of gravity

locations, and mass moments of inertia. Because these

values are all entered as separate numbers and not

calculated by assuming the links are all uniform

geometric shapes, students can find the forces for a

wide variety of link materials and geometries by simply

changing these numbers. Building this type of analysis

from scratch can be complicated. With this toolkit,

students can see complete sets of forces acting between

the different links.

Plotting

Built into all of the mechanism classes are functions to

plot a coupler curve. With nothing but link length, the

path that the coupler point traces can be seen. It

becomes relatively quick and easy to see the changes

in output by varying the input parameters.

Animation

For students without a lot of experience with different

types of linkages, the hardest concept to get across is

the different types of motion that the different classes

of mechanisms can achieve. In view of this, perhaps

the most useful and visually appealing function is the

animation of the mechanisms. The animation function

uses the link length and calculates the position of all

the links at evenly spaced input angles for one whole

revolution of the input. This gives students an

immediate feel for how these linkages would work

far beyond anything a graph could show.

Web-BasedMechanism Design and Analysis

These predefined linkage classes are ready to be used

without much programming at all. All that is needed is

Ch and its Mechanism Toolkit. With the Ch CGI library

and some knowledge of basic HTML, a Web page can

be created that pulls data entered by the user into the

mechanism functions and shows the output on the Web.

To see how these classes work for mechanism analysis,

Web pages have already been created for analyzing

different mechanisms [10,11,13].

A STUDENT PROJECT ON
COMPUTER-AIDED MECHANISM DESIGN
AND ANALYSIS

To appreciate how mechanism analysis is done,

students can use Ch and its graphical and numerical

capabilities to create their own set of functions. The

Figure 1 Hoekens straight-line linkage. [Color figure can

be viewed in the online issue, which is available at

www.interscience.wiley.com.]

TEACHING COMPUTER-AIDED MECHANISM DESIGN 281



ability to use object-oriented programming adds the

possibility of creating a Cþþ class that can be

accessed from many different user programs for the

analysis of a mechanism. The open source Ch

Mechanism Toolkit is a starting point, or template,

for students to get an idea of the programming

structure that can be used. This section demonstrates

this type of class for mechanism analysis with a

student project in a mechanism design course. In this

project, students develop a user-friendly Cþþ class to

analyze a Whitworth quick return mechanism. The

program is then extended for Web-based analysis and

animation. The project description, a sample student

implementation, including code for the Cþþ class,

CGI scripts, and HTML files, as well as the project

report are available for download in Reference [20].

Quick Return Mechanism

A Whitworth quick return mechanism allows a large

force to be applied by the slider in one direction, while

quickly resetting it back to its initial position. The

main components, shown in Figure 2, are the ground

link (r1), input link (r2), input slider (body 3), rocking

link (r3), connector link (r5), and output slider (body

6). The output slider moves horizontally with varying

velocities driven by a constant angular velocity of the

input link. Like most mechanisms, this one works to

change the direction and force of the motion of the

input to provide the desired output.

The first step is to solve the equations that govern

the motion of the mechanism. Two loop-closure

equations are used to analyze the position with a

given angle of the input.

r1 þ r2 ¼ r3 ð1aÞ

r4 þ r5 ¼ r6 þ r7 ð1bÞ

Using complex numbers, Equation (1) can be

represented as follows:

r1e
iy1 þ r2e

iy2 ¼ r3e
iy4 ð2aÞ

r4e
iy4 þ r5e

iy5 ¼ r6e
iy6 þ r7e

iy7 ð2bÞ

Equation (2) are then simplified and broken into

real and imaginary parts which are finally solved for

the unknowns.

In a typical use of this mechanism, the input link

would rotate with a constant angular velocity for _y2 and

zero angular acceleration for €y2. With these additional

known values, a similar procedure can be used to find

velocities by starting with the differentiation of

Equation (2). A second differentiation of the resulting

equations is then used to find accelerations.

Once the accelerations are known and the mass

properties are given, Newton’s Laws are used to

solve for the forces. For this, a set of equations is

derived from each link’s free body diagram. The

resulting set of 13 equations are solved simultaneously

using a matrix of the form [A]x¼ b, where x is the

vector of unknown forces, b is the vector of gravita-

tional and inertia forces, and [A] is the 13� 13 matrix

that relates the two vectors. These equations are quite a

bit more complex to solve than the ones for the

position, velocity, and acceleration. Thus, the need

for a computer in solving these types of mechanism

problems is evident. Although students could solve

these equations with a variety of methods, repeated

computations become quite burdensome and changing

a few parameters means starting over at the very

beginning. A program, while time consuming initially,

will greatly speed the subsequent calculations.

A Cþþ Class for Analysis of a
Quick Return Mechanism

After the governing equations of the mechanism are

derived, a class CQuickReturn can be created to

perform the necessary calculations. The major

components are reviewed below to give an overview

of how the class is structured. First, private data

members are used to store all the variables used in the

analysis. These include the parameters provided by

the user that define the mechanism as well as the

results from the calculations in the program. One

of the major advantages of object-oriented program-

ming is that all the data, whether entered or

calculated, is available to all the other memberFigure 2 The Whitworth quick return mechanism.

282 CAMPBELL AND CHENG



functions without the complication of passing the

variables each time a function is called. Private data is

hidden from the user so they are not burdened with

knowing which piece of information each function

needs when called.

The member functions that perform the actual

calculations are also private members of the class.

They are called as necessary by the public member

functions. This is where the numerical capabilities of

Ch help greatly. The position, velocity, and accel-

eration calculations are performed by using complex

numbers. The force calculations, as they are solved

through linear algebra, are greatly simplified. Once all

the variables are assigned to the matrices, it is only

one function call in the program to solve for

x¼ [A]�1b.

The user interface to the class is through public

member functions. All the parameters of the mecha-

nism are provided through member functions. Link

geometries, mass properties, and input angle and

velocity, among others, are entered as necessary for

the desired analysis. This is another advantage of the

object-oriented programming. Not all the calculations

have to be performed and only the necessary

Figure 3 An application program using the CQuickReturn class within a Crimson

Editor. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

TEACHING COMPUTER-AIDED MECHANISM DESIGN 283



information needs to be given. Output is also handled

through public member functions. The desired

information can be called for without needing to see

the results of all the previous calculations.

An example program is shown in Figure 3 that

uses the developed quick return mechanism class

CQuickReturn. It is presented within Crimson

Editor, an Integrated Development Environment

(IDE) that works with Ch. In the first section of the

program, labeled /* Local variables */, three local

variables are defined for use in the program. The first

one defines the class used for the actual mechanism

analysis, which contains all the user created code for

solving the equations of motion for the system. The

next one defines the plotting class used to create visual

output. The last variable here is used for passing the

output of the calculation functions back to the

program. The second section, labeled /* Mechanism

parameters */, defines all the necessary mechanism

parameters used in the analysis. This includes: link

lengths (r1,2,4,5,7), ground link angle (y1), input link

angle (y2), and input link angular velocity (o2). All

angles are calculated in radians internally. y2 is

therefore multiplied by a conversion factor to keep all

Figure 4 The velocity of the slider as plotted by CQuickReturn class. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5 An animation snapshot of a quick return mecha-

nism. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

284 CAMPBELL AND CHENG



angles in the same units. The section labeled /*

Parameter input */ calls the public member functions

setLinks and setAngVel to enter the constant

mechanism parameters into the private data members.

The calculations section calls several member func-

tions that take in the value of the input link

angle, calculate all necessary parameters, and return

the slider position, velocity, and acceleration which

Figure 6 The Web interface for velocity calculation of a quick return mechanism.

TEACHING COMPUTER-AIDED MECHANISM DESIGN 285



are displayed after each function call. The last

two sections plot a graph of the output slider velocity

verses time for the given input angular velocity and

display an animation of the system in motion.

The numerical output from the program is in the

lower window of Figure 3. The plot of the output

slider’s velocity is shown in Figure 4. The animation

of the mechanism created by the CQuickReturn class

is shown in Figure 5. Only 34 lines of code are

necessary to get numerical and two kinds of graphical

output. This is a simple example that shows only some

of the capabilities of the developed class. More

complicated analysis is possible by defining addi-

tional mechanism parameters and calling other

analysis functions. The source code used for the

above example, including the CQuickReturn class

and the HTML and CGI code described in the

next section, is available to download [20].

Web-Based Interface to the
Mechanism Class

As mentioned earlier, once the CQuickReturn class

is developed, it can be interfaced from Web browsers

[20]. The information is passed through the use of a

simple fill-out form. As an example, the Web page for

calculating velocities is shown in Figure 6.

The interface of the Web page is kept simple, just

showing the necessary information needed for the

analysis. To make the form less cluttered, different

analyses are placed on different pages. Therefore, to

calculate position, one would go to the first page; to

find velocities, one would go to another; etc. It is not

necessary to visit any particular page, but only to go to

the desired page.

A CGI program is created that receives the data

input via a Web browser, calls the member functions

Figure 7 The results from the velocity calculation of a quick return mechanism.

286 CAMPBELL AND CHENG



of CQuickReturn to perform the calculations, and

formats the output for display. The Ch CGI code

includes the classes CRequest and CResponse which

are similar to those in JavaServer Pages (JSP) and

Active Server Pages (ASP). The member function

getForm() is used to extract data from an HTML file,

and the function streval() obtains a numerical value

from a string passed from an HTML file. Figure 7

displays the output of the velocity analysis. In addition

to numerical data, the results can be displayed in the

form of a graph similar to Figure 4, or as an animation

as shown in Figure 8.

The interface with fill-out forms in Ch is much

simpler in comparison with other mathematical

software packages. For example, MATLAB, does

have functions for retrieving data from fill-out

forms. Several structures need to be defined to aid in

the data extraction [21]. The interface to the

CQuickReturn class is an HTML file and one Ch

CGI program.

Students who have to develop a program to run

a mechanism analysis should have no problem

picking up a few extra functions to interact

through the Web. Output in the sample code was also

kept to a minimum, just providing the pertinent

feedback for the mechanism analysis. Therefore,

once students get the basic concept for this type

of Web-based user interface, the capabilities could be

extended.

CONCLUSION

A pedagogically effective teaching methodology for

computer-integrated mechanism analysis and design

has been presented in this article. As a superset of C,

Ch with classes in Cþþ has high-level extensions

for graphical plotting, numerical computing, and

script computing. Without tedious compilation and

linking, this C/Cþþ interpreter is ideal for teaching

and learning subjects in engineering, especially for

interactive presentation in a class. The Ch Mechanism

Toolkit contains classes for analysis and design of

commonly used mechanisms. High-level member

functions in these classes can be used conveniently

for kinematic and dynamical analysis as well as

animation of mechanisms. Using QuickAnimation in

this toolkit, animations of other mechanisms can be

developed. By examining the source code of these

classes, students can develop their own classes to

design and analyze other mechanisms. The system can

also be used for Web-based computing in mechanism

design and analysis. Ch and Ch Mechanism Toolkit

have been used for many years as an effective

teaching tool in an undergraduate course Computer-

Aided Mechanism Design taught at the University of

California, Davis as well as by many other univer-

sities. In our teaching, mechanism design is inter-

woven with object-oriented engineering software

design. A sample student project of designing a

software package for the analysis of a Whitworth

quick return mechanism has been presented in the

article. The feedback from students is very positive.

They enjoy using object-oriented programming to

solve mechanism design problems, especially Web-

based mechanism design and analysis. Both the

principle of teaching and problem solving skills

students learned are applicable to a wide range of

engineering subjects.

ACKNOWLEDGMENTS

This work was supported in part by the University of

California, Davis through an undergraduate instruc-

tional improvement grant and an educational grant

from Intel Corporation.

REFERENCES

[1] MSC Software, http://www.mscsoftware.com/.

[2] A. Perez, H. J. Su, and M. McCarthy, SYNTHETICA

2.0:Software for the synthesis of constrained serial

chains, In Proceedings ASME Design Engineering

Figure 8 The quick return mechanism animation seen

through a Web browser. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.

com.]

TEACHING COMPUTER-AIDED MECHANISM DESIGN 287



Technical Conferences, No. DETC2004/57524, Salt

Lake City, Utah, September (2004).

[3] WATT 1.6 User’s Guide, Heron Technologies (2002).

http://www.heron-technologies.com.

[4] SAM 5.0 User’s Guide, Artas—Engineering Software

(2003). http://www.artas.nl.

[5] T.-T. Fu, Applications of computer simulation in

mechanism teaching, Comput Appl Eng Educ

11 (2003), 156�165.

[6] H. H. Cheng, Pedagogically effective programming

environment for teaching mechanism design, Comput

Appl Eng Educ 2 (1994), 23�39.

[7] H. H. Cheng, Scientific computing in the Ch

programming language, Sci Program 2 (1993), 49�75.

[8] H. H. Cheng, Extending C and FORTRAN for design

automation, ASME Trans J Mech Des 117 (1995),

390�395.

[9] Ch—An Embeddable C/Cþþ interpreter, http://

www.softintegration.com.

[10] Ch Mechanism Toolkit, Softintegration, Inc. http://

www.softintegration.com/products/toolkit/mechanism/.

[11] J. Larson and H. H. Cheng, Object-oriented cam design

through the Internet, Intell Manuf 11 (2000), 515�534.

[12] H. H. Cheng and D. Trang, Object-oriented interactive

mechanism design and analysis, Eng Comput

21 (2006), 237�246.

[13] H. H. Cheng and D. Trang, Web-based interactive

analysis and animation of mechanisms, ASME Trans J

Comput Inform Sci Eng 6 (2006), 84�90.

[14] The Common Gateway Interface, MCSA Software

Development Group (1996).

[15] Ch CGI Toolkit, SoftIntegration, Inc. http://www.sof-

tintegration.com/products/toolkit/cgi/

[16] H. H. Cheng, CGI Programming in C, C/Cþþ Users J

14(11) (1996), 17�21.

[17] Y. Zhu, B. Chen, and H. H. Cheng, An object-based

software package for interactive control system design

and analysis, ASME Trans J Comput Inform Sci Eng

3 (2003), 366�371.

[18] Q. Yu, B. Chen, and H. H. Cheng, Web-based control

system design and analysis, IEEE Control Syst Mag

24 (2004), 366�367.

[19] E. Pennestri, Kinematic Synthesis of Mechanisms,

http://www.ingegneriameccanica.org/mechanisms.htm.

[20] Design and analysis of Whitworth quick return

mechanism http://iel.ucdavis.edu/projects/mechanism/

quickreturn.

[21] P. S. Shiakolas, V. Chandra, and J. Kebrle, Environ-

ment for engineering design, analysis, and simu-

lation for education using MATLAB via the World

Wide Web, Comput Appl Eng Educ 10 (2002),

99�120.

BIOGRAPHIES

Matt Campbell graduated with an MS in

mechanical engineering from the University

of California, Davis. His BS in mechanical

engineering came from California State

University, Chico. While in Davis he con-

ducted research in the Integration Engineer-

ing Laboratory in the Department of

Mechanical and Aeronautical Engineering.

Currently his research includes the integra-

tion of hardware and software systems, sensor fusion in distributed

systems, and mobile computing.

Harry H. Cheng is a professor and director

of the Integration Engineering Laboratory at

the University of California, Davis. He

received the PhD degree in mechanical

engineering and the MS degree in mathe-

matics from the University of Illinois at

Chicago in 1989 and 1986, respectively. He

is the chief architect of an embeddable C/

Cþþ interpreter Ch for script computing,

which is being widely used in both academia and industry. He holds

one US patent and has published over 120 articles in refereed

journals and conference proceedings. He is a fellow of ASME and a

senior member of IEEE, IEEE Computer Society, and IEEE

Robotics and Automation Society. His current research interests

include mobile multiagent systems, information-driven mechatronic

systems, computer-aided design and manufacturing, and intelligent

transportation systems.

288 CAMPBELL AND CHENG


