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Abstract

This paper presents an integrated machining error compensation method based on polynomial neural network (PNN) approach and

inspection database of on-machine-measurement (OMM) system. To improve the accuracy of the OMM system, geometric errors of the

CNC machining center and probing errors are compensated. Machining error distributions of a specimen workpiece are measured to

obtain error compensation parameters. To efficiently analyze the machining errors, two machining error parameters, Werr and Derr, are

defined. Subsequently, these parameters can be modeled using the PNN approach, which is used to determine machining errors for the

considered cutting conditions. Consequently, by using an iterative algorithm, tool path can be corrected to effectively reduce machining

errors in the end-milling process. Required programs are developed using Ch language, and modified termination method are applied to

reduce computation times. Experiments are carried out to validate the approaches proposed in this paper. The proposed

integrated machining error compensation method can be effectively implemented in a real machining situation, producing much fewer

errors.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, with the developments of the CAD/CAM
system, end-milling processes are very popular in the field
of manufacturing industries. However, there exist some
undesirable disturbance factors in the actual machining
processes, which are not integrated in current CAD/CAM
systems. Among these disturbance factors, the tool
deflection problem can directly affect machined surface
quality as well as productivity. It is especially difficult to
avoid excessive machining errors when slender-type tool is
used for manufacturing dies containing complex-sculp-
tured surfaces. Hence, the tool deflection problem must be
e front matter r 2005 Elsevier Ltd. All rights reserved.
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treated to obtain an accurate surface form with respect to
the designed form obtained from the CAD/CAM systems.
Many researches have been carried out on the compen-

sation of machining errors. The approaches presented in
these researches consist of controlling the cutting forces
during machining process so that they do not exceed preset
forces [13,14]. In contrast to these approaches, Watanabe
and Iwai [16] proposed shifting tool position in real time.
To implement this approach in real time, measurement
instruments (e.g. dynamometer, sensor, amplifier etc.) must
be used and thus, machining becomes expensive. More-
over, controlling the cutting forces cannot precisely
compensate surface errors and increases machining time.
On the other hand, off-line-type error compensation
approaches have been proposed [10–12]. These approaches
consist of correcting tool paths based on machined surface
prediction before the actual milling process. To correct the
tool paths, a series of simulations are needed to model the

www.elsevier.com/locate/ijmactool
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cutting forces, to calculate tool deflection, and to predict
machined surface shapes. In this case, the simulation errors
produced in each step can accumulate and become an
important disturbance factor of accurate error compensa-
tion. Although these approaches have been improved by
various methods, the compensation process has become
more complicated. Lo and Hsiao [13] proposed an off-line
error compensation approach based on inspection process,
which can improve the drawbacks of the other methods. In
their method, machining process is executed first using a
nominal tool path, and surface errors are measured on the
coordinate measuring machine (CMM). Subsequent ma-
chining processes are executed with the corrected tool path
symmetrically shifted by as much as the measured errors.
These series of processes are repeated until the machining
errors disappear appropriately. In fact, this approach
allows the error compensation process to be effectively
implemented for repeated parts, as mentioned in the study,
but this approach too has its drawbacks.

To improve such problems, on-machine-measurement
(OMM) system has recently received much interest as a
new inspection process technique. With the OMM system,
inspection process can be carried out directly on the same
CNC machining center by exchanging only the cutting tool
for measuring probes. In this case, both CAD and CAM
databases have to be simultaneously considered to
constitute the inspection database because manufacturing
and inspection processes can be performed on the same
CNC machining center.

This study proposes an efficient machining error
compensation method for flat-end milling process based
on polynomial neural network (PNN) trained using OMM
inspection data, a method which allows outstanding
reduction of machining errors without unnecessary re-
peated processes and expensive costs. From the OMM
inspection results, two characterized machining error
parameters are defined to simply represent complex
machined surface shapes. These parameters can be
modeled using the PNN algorithm that describes the direct
relationships between given machining conditions and the
characterized machining error parameters. To correct a
given tool path, an iterative computational approach is
proposed, which repeatedly shifts the tool positions to
reduce the machining errors. Required programs are
developed using Ch language, and a modified termination
method is applied to reduce computation times. Required
experiments are carried out to validate the performance of
the proposed machining error compensation methodology.

2. Machining error compensation methodology

Generally, there is a complicated distribution of machin-
ing errors on machined surfaces. It is difficult to
functionally obtain a global trend of error distributions
because of the non-linearity of the machined surface
shapes. In this research, an efficient machining error
distribution prediction method is used. Two characterized
machining error parameters are defined so that the amount
of machining error can be described without having to
model the machined shape exactly. To determine these
parameters, OMM inspection data are obtained from the
machined surface using a touch-type probe. Since the
accuracy of the OMM data generally depends on that of
the machining center used, the errors of the CNC
machining center and probe must be compensated to
improve measurement accuracy. Modified PNN algorithm
is applied to define the relationship between measured
surface shapes and the characterized machining error
parameters. Then, error compensated tool paths are
calculated using the proposed iterative method.

2.1. Proposed machining error compensation concept

Non-linearity of machined surfaces generally originates
from the dynamic behaviors of the cutting tool during
machining process. Such non-linearity cannot be easily
predicted because the machining process is too complicated
to be analyzed computationally. Nevertheless, various
approaches have been applied for machining error predic-
tion. The majority of these approaches depend on mechan-
ical modeling of the machining process under various
conditions. These modeling techniques employ a large
experimental database to account for the wide range of
machining conditions. Therefore, these techniques may make
the error prediction process unnecessarily complicated.
For obtaining an overall machining error prediction

without analyzing all the machining process parameters
(e.g. cutting forces, tool deflection amount, tool run out,
chattering etc.), a direct relationship between the machin-
ing conditions and the machining errors would be
sufficient. Using the OMM system, machining error
distributions can be directly obtained from machined
surfaces of a specimen workpiece at specified machining
conditions. In fact, the purpose of this study is not to
obtain the exact shape of the machined surface, but to
reduce the global machining errors by comparing them
with the tolerance criteria. To effectively compare the
machining errors with the tolerance criteria, a reference
machining error must be chosen. Two characteristic
parameters are defined, corresponding to two extreme
errors, to represent the overall machining error trend.
Then, a direct relationship between machining conditions
and these characteristic parameters are obtained. This
relationship cannot be easily modeled by an analytic
approach due to the complicated nature of the machining
process; thus, a PNN model is used. The PNN is trained
based on the acquired OMM inspection database and
corresponding machining conditions. Then, using the
trained PNN model, the characteristic parameters can be
predicted. To correct the tool path for machining error
reduction, an iterative algorithm is proposed. The process
carries out repeated comparisons between the predicted
characteristic parameters and the imposed tolerance to
correct the tool positions until the machining errors are
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Fig. 1. Basic concept for the proposed machining error compensation.
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reduced to a desired level. Fig. 1 shows the basic concept of
the proposed machining error compensation method. Fig.
2 illustrates a global process of the proposed approach
employed in this study.

2.2. Application of OMM system for compensation

Fig. 3 illustrates the basic concept of OMM system. The
OMM system makes it possible to perform inspection
processes directly on the same CNC machining center by
exchanging only a cutting tool for a measuring probe. In
this case, both CAD and CAM databases have to be
simultaneously considered to construct an inspection
database because manufacturing and inspection processes
are performed on the same CNC machining center.

The inspection accuracy of the OMM system mainly
depends on two error sources: (1) geometric error terms of
a machine, and (2) probing errors varying according to
probe types. Such errors, measured at the tool tip, are due
to dimensional and form errors of its kinematic linkage
system, and angular and positional misalignments between
each movements. An OMM system can be established by
exchanging a cutting tool for a measuring probe, but this
exchange can cause an inspection error at the probe.
Furthermore, when using a touch-type probe, probing
errors, called ‘‘pre-travel variation’’, must be considered
because it is one of the major sources of probing inaccuracy
[6]. Using a certificate sphere, it is possible to model pre-
travel variation according to the probe-approaching
direction, stylus length, and probe diameter, etc. A step-
by-step volumetric error analysis using a closed-loop
configuration of multi-axis machine tools [5] is applied to
improve the inspection process planning of the OMM
system as well as to improve the accurate machining
process.

2.3. Characterization of machining error parameters

Generally, machined surface shapes are not the same as
the deflected tool shapes. Under same cutting conditions,
cutting forces vary according to rotational position of the
tool; therefore, the amount of tool deflection also varies
according to the tool angular position. Therefore, ma-
chined surface shapes are generated differently than the
deflected tool shapes. The surface errors are not uniformly
distributed on the machined surface. Hence, it is necessary
to characterize the errors in order to compare them with
the given tolerance criteria. In the machined surface
prediction process for error compensation according to
tolerance criteria, two extreme errors can be taken into
account as predominant factors, regardless of surface
morphology. In this case, error interval and deviation
amount rather than precise surface shape must be
considered. First, ‘‘maximal error Emax’’ and ‘‘minimal
error Emin’’ are defined to quantitatively analyze machining
error distributions.
The maximal error Emax is the largest algebraic error on

the milled surface with respect to a given coordinate on the
desired profile. If this error leads to an undercut with
respect to the desired profile, Emax has positive values; but,
if it leads to an overcut, Emax has negative values. Similarly,
the minimal error Emin is the smallest algebraic error on the
milled surface with respect to a given coordinate on the
desired profile. If this error leads to an undercut with
respect to the desired profile, Emin has positive values; but,
if it leads to an overcut, Emin has negative values.
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Based on these two extreme errors Emax and Emin, the
‘‘Error zone’’ is defined to characterize the distributed
surface errors as shown in Fig. 4(a). Under the deflection
effects, this error zone deviates from reference profile. To
analyze the error zone, two characterized parameters:
‘‘width of error zone Werr’’ and ‘‘deviation amount of error
zone Derr’’. Although these parameters cannot represent all
geometrical information of the machined surface form,
they can, however, make it possible to effectively analyze
the tool-deflection effect on the machined surfaces because
it is not necessary to recognize exact surface shapes to
compare with the tolerance criteria. These characteristic
parameters are derived as follows:

Werr ¼
Emax þ Emin

2
and Derr ¼ Emin þ

Werr

2
. (1)

Generally, the given machining tolerance zone is decided
by two surfaces enveloping the spheres of diameter Wtol,
while the centers of the spheres are located on a desired
surface. According to circumstances, this desired surface is
not coincidental with the reference surface of the tolerance.
The machined surfaces have to be in close vicinity to the
desired surface to meet the tolerance. Similarly, to
represent the tolerance parameters of the characterized
surface error parameters Werr and Derr, ‘‘width of tolerance
criteria Wtol’’ and ‘‘deviation of tolerance criteria Dtol’’ are
defined. Here, Wtol represents the diameter of the sphere
defining the tolerances as mentioned and Dtol represents the
distance between the desired surface and the reference
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surface. Fig. 4 shows these parameters from a sectional
view. Therefore, comparing only these parameters, it is
possible to check whether the machined surface can meet
the given tolerance.

2.4. Tool path correction methodology

When correcting a tool path based on the effects of the
estimated machining error, the cutting conditions are
changed compared to the previous conditions along the
nominal tool path. That is, the changed cutting conditions
induce changes on the machining errors, which affect the
initial estimate. Such things will be repeated until the
changes of the error effects and the cutting conditions
mutually decrease, and then, reach a state of balance. In this
paper, an improved compensation process is proposed
through a computational procedure, which consists of
comparing the characterized machining error parameters
with the tolerance to correct the tool path iteratively. Since
this proposed approach is carried out only in the computa-
tional procedure before real machining processes, repetitive
machining and inspection processes are not required even if
the desired surface forms are changed. The tool path
correction methodology is presented in Fig. 5.
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When a nominal tool path is being generated in a CAM
system, cutter location (CL)-point data are determined to
prevent the interpolation errors between the CL-points
from exceeding the given tolerance. If the initial shape of
the workpiece between consecutive CL-points does not
maintain the same form, the cutting tool will encounter a
varied depth of cut while passing these CL-points. First,
the nominal tool path has to be divided into an appropriate
number of tool positions to take into account the depth of
cut transitions. For each divided tool position, we apply an
iterative procedure to search for the corrected tool
position. This procedure is depicted in Fig. 5. Here, TPN

represents a divided tool position from a nominal tool
path, and iTPC represent a corrected tool position at ith
iteration. For each ith iteration, we compute values of iWerr

and iDerr with respect to iRD (radial depth of cut)
corresponding to the corrected tool position iTPC by using
the PNN model trained on the basis of the OMM
inspection data. The corrected tool position iTPC is
repetitively corrected by a previously computed value of
iDerr until

iDerr should be coincidental with Dtol. Finally, it
is possible to reach a mth iteration, where mDerr, computed
at the tool position mTPC corrected by –(m–1)Derr, would be
coincidental with Dtol. This algorithmic will be applied into
all the divided tool positions until we obtain all the
corrected tool positions. Finally, a set of the corrected tool
positions becomes a corrected tool path.

As mentioned, this tool path correction methodology is
carried out in a computational process. According to
circumstances, mWerr can be larger than Wtol after finishing
the tool position correction if a narrow tolerance is
imposed on the desired surface. Since this case could be
checked by using our tool path correction methodology, it
is possible to avoid unnecessary tool path correction with
respect to the tolerance. In other words, the computational
tool path correction process allows us to find out tolerance
criteria, which can be fulfilled in the given machining
conditions.

3. Modified PNN algorithm application

3.1. Polynomial neural network

The relationship between the tool deflection effects and
the machining errors cannot be simply defined because the
machining process includes a certain non-linearity. One of
the approaches along the systematic design of nonlinear
relationships is PNN, often referred to as group method of
data handling (GMDH), which consists of a multi-layered
perceptron-type network [8,9]. In this study, it is tried to
model the nonlinear relationships between the character-
ized machining error parameters (Werr and Derr) and the
machining conditions by using the PNN approach.

The PNN algorithm [9] can be represented as a set of
neurons whose different pairs in each layer are connected
through a quadratic polynomial to produce new neurons in
the next layer. Such representation can be used in modeling
to map inputs to outputs. The formal definition of the
identification problem is to find an approximate function f̂

that can be used instead of the actual one, f, to predict
output ŷ for a given input vector X ¼ (x1, x2, x3,y, xn) as
close as possible to the actual output y. Therefore, multi-
input-single-output data pairs for given M observations
can be represented as follows:

y ¼ f ðxi1;xi2;xi3; . . . ;xinÞ where i ¼ 1; 2; 3; . . . ;M . (2)

It is now possible to train a PNN to predict the output
values ŷi for any given input vector
X ¼ ðxi1;xi2;xi3; . . . ;xinÞ, that is

ŷi ¼ f̂ ðxi1;xi2; xi3; . . . ; xinÞ where i ¼ 1; 2; 3; . . . ;M .

(3)

It is necessary now to determine a PNN so that the
square of the difference between the actual output and the
predicted one is minimized as follows:

XM
i¼1

ff̂ ðxi1;xi2;xi3; . . . ;xinÞ � yig
2! min . (4)

General connection between input and output variables
can be expressed by a complicated polynomial form as
follows:

y ¼ a0 þ
Xn

i¼1

aixi þ
Xn

i¼1

Xn

j¼1

aijxixj

þ
Xn

i¼1

Xn

j¼1

Xn

k¼1

aijkxixjxk þ . . . . ð5Þ

This is known as the Ivakhnenko polynomial [8].
However, for most of the applications, the quadratic
form of only two variables is used to predict output y as
follows:

ŷ ¼ Gðxi;xjÞ ¼ a0 þ a1xi þ a2xj þ a3xixj

þ a4x2
i þ a5x

2
j . ð6Þ

The coefficients ai in Eq. (5) are calculated using
regression techniques so that the difference between the
actual output, y, and the calculated one, ŷ, for each pair of
(xi, xj) as input variables is minimized. Indeed, a tree of
polynomials is constructed using the quadratic form given
in Eq. (6), whose coefficients are obtained in a least-squares
sense. In this way, the coefficients of each quadratic
function Gi are obtained to optimally fit the output in the
whole set of input-output data pairs; that is,

r2 ¼

PM
i¼1ðyi � ŷÞ2PM

i¼1y
2
i

. (7)

In the basic form of the PNN, all the possibilities of two
independent variables out of a total of n input variables
are taken to construct the regression polynomial in the
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Table 1

Summarized algorithm

1
TPC ¼ TPN; % Initialization of the corrected tool position i

TPC

For i ¼ 1 to M do

Begin
i
RD ¼ f(iTPC); % Calculation of the radial depth of cut i

RD with respect

to i
TPC

iWerr ¼ PNN model(iRD); % Calculation of iWerr by the PNN model
iDerr ¼ PNN model(iRD); % Calculation of iDerr by the PNN model

If (Dtol�
i
DerrE0)

Exit of ‘‘For statement’’;

Else
(i+1)TPC ¼ Dtol–

iDerr;

End
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form of Eq. (6) that best fits the dependent observations
ðyi; i ¼ 1; 2; . . . ;MÞ in a least-squares sense.

n

2

� �
¼

nðn� 1Þ

2
. (8)

Eq. (8) represents the number of neurons that will be
constructed in the second layer of the feedforward network
from the observations fðyi;xip;xiqÞ; i ¼ 1; 2; 3; . . . ;Mg for
different p; q 2 f1; 2; 3; . . . ;Mg. In other words, it is now
possible to construct M data triples fðyi; xip;xiqÞ; i ¼
1; 2; 3; . . . ;Mg from observation using such p; q 2
f1; 2; 3; . . . ;Mg in the following form:

p; q 2 f1; 2; 3; . . . ;Mg the form

x1p x1q . . . y1

x2p x2q . . . y2

. . . . . . . . . . . .

xMp xMq . . . yM

2
666664

3
777775
. ð9Þ

Using the quadratic sub-expression in the form of Eq. (9)
for each row of M data triples, the following matrix
equation can be readily obtained as follows:

Aa ¼ Y, (10)

where a is the vector of unknown coefficients of the
quadratic polynomial in Eq. (6).

a ¼ fa0; a1; a2; a3; a4; a5g;

Y ¼ fy1; y2; y3; . . . ; yMg
T:

(11)

Y is the vector of output values from observation, as
follows:

A ¼

1 x1p x1q x1px1q x2
1p x2

1q

1 x2p x2q x2px2q x2
2p x2

2q

. . . . . . . . . . . . . . . . . .

1 xMp xMq xMpxMq x2
Mp x2

Mq

2
66664

3
77775. (12)

The least-squares technique from multiple-regression
analysis leads to the solution of the normal equations in
the following form:

a ¼ ðATAÞ�1ATY. (13)

This equation determines the vector of the best
coefficients of the quadratic Eq. (6) for the whole set of
M data triples. However, such solution obtained directly
from normal equations can be susceptible to round off
error and, more importantly, to the singularity of these
equations.

For a PNN application, the cutting conditions (radial
depth of cut, axial depth of cut, feedrate) and Werr and Derr

are taken into account as input–output pair data. The
PNN model will be trained by the OMM inspection data
on a machined specimen part. After training, the values of
Werr and Derr can be determined for any given cutting
conditions. This trained PNN will be used to correct the
tool path by an iterative methodology.
3.2. Modified PNN algorithm

In general PNN algorithm, errors are compared with the
threshold value R at each node. Node outputs are selected
only when the errors are smaller than R. However, such
method can cause increasing number of remaining nodes,
as node outputs become closer to the required outputs, and
as such, the number of computational procedures can
increase. Thus, in this study, the modified algorithm-
terminating method [7] is employed, which uses variable
(decreasing) threshold values as increasing layers. The
following threshold conditions are calculated at each layer
to avoid increasing node numbers.

Rs ¼ R MINs þ d, (14)

where d is a predefined value for proper computation.

3.3. System implementation using Ch language

In this study, required programs are developed using Ch
language, which is developed by Cheng [3,4]. Ch is a general-
purpose, block-structured interpretive programming language
developed to be especially suitable for research and
applications in scientific and system programming. The
programmed algorithm is summarized as Table 1.
Also, to integrate the developed PNN program with

existing OMM libraries, Ch SDK is used so that C/C++
scripts (Ch scripts) can be interfaced with C/C++ binary
libraries. To implement a unified experimental environ-
ment, required A/D board library functions are interfaced
with the main program using embedded Ch for cutting
force variation monitoring. Schematic diagram for such
procedure is illustrated in Fig. 6. Fig. 7 shows the
implemented machining error compensation system struc-
ture based on the above-mentioned concept.

4. Experimental work

4.1. OMM system calibration

A laser interferometer is used to measure the geometric
error components of a three-axis vertical machining center
(HiMac-V100, Hyundai). Based on the measured error
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Fig. 7. Developed machining error compensation system structure.
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components, the transformation matrices can be determined
[5]. Since the transformation matrices are functions of the
cutting tool or the probe locations, the geometric errors can
be compensated when the CL-points or the probe positions
are given. To compensate for the pre-travel variation errors, a
certificate sphere, called the ‘‘master ball’’ (Renishaw, 25mm-
diameter), and a touch-type probe (Renishaw, 2mm-
diameter, 80mm-stylus length) are used to make the probing
error map, which depends on tilt and roll angle according to
the probe-approaching directions. When using the OMM
system on a three-axis machining center, tilt angle varies from
01 to 901, and roll angle varies from 01 to 3601. In these
ranges, the pre-travel variations are measured using a
certificate sphere, which can vary according to the tilt angle
and the roll angle. When inspecting the machining errors on
the OMM system, the pre-travel variations are compensated
on the basis of this probing error map. The tilt angle and the
roll angle can be determined by the geometric shape of the
desired surface corresponding to the CAD data.

4.2. Determination of characterized machining error

parameters

Through the geometric error compensation of the
machining center and the probing errors, the machining
and the inspection errors can be significantly reduced.
Therefore, the tool deflection and run-out effects can
become predominant factors causing machining errors.
First, flat-end milling processes of two specimen work-
pieces are performed as shown in Fig. 8. Thus, it is possible
to check the variations ofWerr and Derr. In these machining
processes, a flat-end mill with initially machined parts is
used. The detail specifications of the cutter and the
machining conditions are given in Table 1.
Surface errors, distributed on the machined surfaces, are

measured using the OMM system. After Emax and Emin are
determined at each position, Werr and Derr can be
determined. According to the locations of the measuring
points, it is possible to find out the values of the radial
depth of cut RD corresponding to all Werr and Derr. Based
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Table 2

Specifications of machining process

Tool Machining conditions

Flute part f 6mm Spindle speed 1500 rpm

Cylindrical part f 8mm Feedrate 30mm/min

Used length 50mm Milling mode Down milling

Flute part length 30mm Radial depth 0–2.5mm

Flute number 4 Axial depth 6mm (fixed)

Helix angle 301 Workpiece Mild steel
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on the inspection data, the PNN model, which relates Werr

and Derr to RD, can be trained and Fig. 9 shows the values
of Werr and Derr measured and predicted by the PNN
model with respect to RD.

4.3. Experimental results

Based on the PNN model trained by the OMM
inspection data, it is tried to correct the cutting tool path
for a different shape of a machining part. Fig. 10 shows the
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desired shape for this machining part. This machining
operation aims to manufacture an offset surface 2mm from
the roughed surface. The desired shape is a combination of
straight lines and arcs. Therefore, the radial depth of cut
varies along the tool path despite the 2mm constant offset.
Using the proposed tool path correction methodology, a
new tool path is generated to minimize the errors, and two
cutting processes are carried out with both uncorrected and
corrected tool paths to compare error distributions under
the cutting conditions shown in Table 2. Fig. 11 shows
uncompensated and compensated surface error distribu-
tions. These results show that the compensated errors can
be remarkably reduced by about 90 percent compared to
uncompensated errors. Such results insist that the proposed
machining error compensation method for flat end-milling
process can be applied to real precision machining process.
5. Conclusions

The main purpose of this study is to implement an agile
machining error compensation method for flat-end milling
processes based on the PNN trained by the OMM
inspection data. Based on the OMM inspection results, a
PNN model for machining error prediction process is
constructed by using Ch language. Thus, direct relation-
ships between given machining conditions and the machin-
ing errors can be described. To correct the tool path for the
machining error reduction, an iterative computational
approach is applied, which repeatedly shifts the tool
positions to reduce the predicted surface errors. In
experimental examples, the compensated errors decrease
remarkably by about 90 percent compared to uncompen-
sated errors.
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