
ORIGINAL ARTICLE

Harry H. Cheng Æ Dung T. Trang

Object-oriented interactive mechanism design and analysis

Received: 17 September 2004 / Accepted: 3 February 2005 / Published online: 15 December 2005
� Springer-Verlag London Limited 2005

Abstract We have developed a Ch Mechanism Toolkit
for analysis and design of mechanisms. The toolkit was
developed using Ch, an embeddable C/C++ interpreter
with high-level extensions. The toolkit consists of ani-
mation program QuickAnimationTM and a collection of
classes for design and analysis of commonly used
mechanisms. The Ch Mechanism Toolkit allows users to
write simple programs to solve complicated planar
mechanism problems. The toolkit can handle mecha-
nisms ranging from the simple fourbar linkage to vari-
ous sixbar linkages. The Ch Mechanism Toolkit can also
be used to design cam-follower systems. It is an effective
tool for engineering practice as well as for teaching and
learning mechanism design and analysis. This paper
describes the design and implementation of the Ch
Mechanism Toolkit and its applications.

Keywords Mechanisms Æ Fourbar linkage Æ Ch Æ
C/C++ interpreter

1 Introduction

Computational methods for analysis and design of
mechanical systems have become increasingly popular
in engineering practice. Procedures that were often te-
dious in the past can now be completed easily with the
aid of computers. For example, general purpose soft-
ware packages such as Pro/ENGINEER, Automated
Dynamic Analysis of Mechanical Systems (ADAMS),
Dynamic Analysis and Design System (DADS), and
Working Model [1] were developed to solve compli-

cated engineering design and analysis problems. Other
software packages includes Linkage INteractive Com-
puter Analysis and Graphical Enhanced Synthesis
Package (LINCAGES) [2, 3], Watt by Heron [4], and
Simulation and Analysis of Mechanisms (SAM) by
Artas [5], which are available for synthesis and analysis
of planar mechanisms. The software package Synthe-
tica [6] can be used for synthesis of spatial mechanisms.
However, the numerical aspects and software imple-
mentation of mechanism analysis and design cannot be
easily appreciated through the graphical user interface
of these software packages. The analytical sequences of
the algorithm are not transparent to users in these
menu-driven software packages. Therefore, they are not
ideal for applications such as teaching and learning of
mechanism design. In addition to basic principles, it is
increasingly important to understand the computa-
tional aspects of the subject. These software packages
cannot readily incorporate numerical algorithms such
as optimization into the system. On the other hand,
general-purpose mathematical and dynamic simulation
packages, such as Autolev [7] based on Kane’s
dynamics formulation, are not convenient for rapid
design and analysis of mechanisms. Nevertheless, the C
code generated from Autolev can readily run in Ch
without any modification [8].

We have developed a Ch Mechanism Toolkit [9] for
mechanism design and analysis. The toolkit is developed
in C/C++ interpreter Ch [10–12]. Ch, conforming to
the international C standard with extensions, contains
all salient features of MATLAB for numerical and script
computing. A Ch Control System Toolkit is available
for design and analysis of control systems [13, 14]. The
Ch Mechanism Toolkit [9] is significantly different from
other software packages. The toolkit is modular and
contains many objects as building blocks. These small
building blocs are easy to develop and maintain. The
users are able to examine the available source code and
sample programs provided within the toolkit. The Ch
Mechanism Toolkit [9] has been used to teach
the undergraduate course Computer-Aided Mechanism

Submitted to Engineering with Computers

H. H. Cheng (&) Æ D. T. Trang
Integration Engineering Laboratory, Department of Mechanical
and Aeronautical Engineering, University of California, Davis,
CA, 95616 USA
E-mail: hhcheng@ucdavis.edu
Tel.: +1-530-7525020
Fax: +1-530-7524158

Engineering with Computers (2006) 21: 237–246
DOI 10.1007/s00366-005-0008-4

Design at the University of California, Davis [15]. The
toolkit provided students with the opportunity to study
and understand the algorithms and their software
implementation. Furthermore, students are able to
examine sample programs and modify them accordingly
to solve their own mechanism design and analysis
problems. Through this learning-by-example process,
students can better understand the principles and
numerical aspects of the subject. Additionally, students
can use the toolkit’s high-level building blocks to de-
velop their own software programs for solving compli-
cated engineering analysis and design problems. For
example, a package for design and analysis of Whit-
worth quick return mechanism was developed by stu-
dents as a project for the class [16, 17]. The Ch
Mechanism Toolkit is open architecture. Based on this
toolkit, a Web-based mechanism design and analysis
module has been developed. The user can design and
analyze mechanisms interactively through a Web
browser without any computer programming [18, 19].
There are also open source programs available for
kinematic synthesis [20] based on Ch and its Mechanism
Toolkit. The Ch Mechanism Toolkit can also be inte-
grated into CAD environments such as Pro/ENGI-
NEER, ADADMS, and DADS using their C
Application Programming Interface (API) and Embed-
ded Ch [21].

This paper describes the design and implementation
of the Ch Mechanism Toolkit along with its various
features. The convenience and simplicity of the toolkit
are illustrated through application examples. Like
modules for other mechanisms, the software for design
and analysis of fourbar linkages is open source. The
presentation of this paper will focus primarily on four-
bar linkages. However, the ideas and concepts are
applicable to other mechanisms as well.

2 Features of Ch Mechanism Toolkit

The Ch Mechanism Toolkit is a useful tool for design
and analysis of planar mechanisms. Features of the
toolkit make it convenient for engineering practice, and
teaching and learning. This section briefly describes a
few features of the Ch Mechanism Toolkit.

2.1 Analysis of various linkages

The Ch Mechanism Toolkit is capable of handling many
kinds of planar mechanisms. Analysis can be performed
on simple mechanisms such as the fourbar linkage as
well as on more complex ones such as sixbar linkages.
This toolkit supports the analysis of the fourbar, crank-
slider, geared-fivebar, Stephenson I & III, and Watt I &
II linkages. Furthermore, the Ch Mechanism Toolkit
can be used to design cam-follower systems for both flat
faced and roller followers.

2.2 Graphical outputs

The Ch Mechanism Toolkit supports graphical presen-
tations in the form of plots and animations. The toolkit
can output linkage analysis results graphically using the
Ch plotting class CPlot. Class CPlot allows for high-
level generation of two- and three-dimensional plotting.
The users can readily customize the plots generated by
the plotting class. For example, properties such as plot
titles and axis labels can be set by calling member
functions of class CPlot. Furthermore, rather than dis-
playing the plots on the computer screen, they can be
saved to files of different formats, such as a postscript
file, PNG, and GIF.

The users are also able to simulate the motion of the
various linkages and cam-follower systems available in
the Ch Mechanism Toolkit. Each mechanism class con-
tains an animation() function to perform this task. This
member function utilizes the QuickAnimationTM soft-
ware module to generate the desired animation. Figure 1
shows the drawing primitives available in QuickAnima-
tionTM. These basic primitives are used to create the
mechanical drawing primitives shown in Fig. 2, which
are used for generating linkage animations. Member
function animation() utilizes these primitives to draw the
linkages for each frame of animation. Similar to the
plotting features of the toolkit, the animation data may
also be saved to a file, with extension .qnm. Using the
animation data, the QuickAnimationTM software mod-
ule can perform animation at a later time.

3 Design and implementation of Ch Mechanism Toolkit

Object-oriented programming refers to the use of C++
style classes, which consist of a set of variables and

2
(x , y)

2

Segment

1
(x , y)

1

nn
(x , y)

2
(x , y)

2

Line

(x, y) string

Text

(x, y)radius

Circle

Polygon

(x, y)

(x, y)

height

angle

width

1
(x , y)

1

2
(x , y)

2

nn
(x , y)

1
(x , y)

1

Arc

width

angle1

angle2

height

Rectangle

Fig. 1 Graphical representation of general drawing primitives

238

functions. The attributes and operations for a class are
usually referred to as data members and member func-
tions, respectively. Data members are typically private
for data encapsulation, meaning that they can only be
accessed by member functions associated with the class.
Member functions may either be private or public. Pri-
vate member functions are considered utility functions to
their public counterpart. Users have access only to public
member functions of a class. They would use these public
member functions to indirectly access the private data
members and member functions of the class.

The Ch Mechanism Toolkit consists of many C++
style classes for analyzing various planar mechanisms.
For example, classes CFourbar, CCrankSlider, and
CGearedFivebar are used to handle the analysis and de-
sign of fourbar, crank-slider, and geared-fivebar link-
ages, respectively. Along with these classes, other classes
are available for analysis of various sixbar linkages as

well as cam-follower mechanisms. As with typical C++
classes, the classes of the Ch Mechanism Toolkit is
comprised of private data members and private/public
member functions. Private data members are used to
store parameters that uniquely specifies the configuration
of a certain mechanism, such as link dimensions. The
member functions use the values stored in the data
members to perform various calculations. For example,
all classes of the Ch Mechanism Toolkit contain member
functions for calculating the angular positions, velocities,
and accelerations of individual link members for a given
mechanism configuration. Furthermore, if a coupler is
attached to one of the links, kinematic analysis can be
performed on the coupler point as well.

3.1 Data members

As described earlier, the private data members of a Ch
Mechanism toolkit class consists of parameters that
defines a unique configuration of a planar linkage. For
example, consider the fourbar linkage shown in Fig. 3.
Link lengths r1, r2, r3, and r4, and phase angle h1 for link
1 are some parameters that can be used to define a
fourbar linkage. These values are used to perform vari-
ous analysis on the fourbar linkage, such as calculating
the angular position, velocity, and acceleration of the
individual links. Table 1 is the list of private data
members for class CFourbar. Note that the variable
names are prefixed by m_ to indicate that they are pri-
vate members. Among the list of data members are

offset

2
(x , y)

2

1
(x , y)

1

2
(x , y)

2

1
(x , y)

1

1

Slider

(x, y)

Point

2

angle

(x, y)

angle

(x, y)

(x , y)
2

1
(x , y)

Spring

Link
Joint

(x, y)

Ground Pin

Ground

Fig. 2 Graphical representation of mechanical drawing primitives

Fig. 3 Fourbar linkage

Table 1 Private data members of class CFourbar

Data member Description

double m_r[1:4] Link lengths
double m_theta1 Phase angle for

ground link
double m_rp, m_beta Coupler point

parameters
double
m_inputlimitmin[2]

Minimum value
for theta 2

double
m_inputlimitmax[2]

Maximum value
for theta 2

double
m_outputlimitmin[2]

Minimum value
for theta 4

double
m_outputlimitmax[2]

Maximum value
for theta 4

double m_rg[1:4] Distance to center
of gravity

double m_delta[1:4] Phase angle to center
of gravity

double m_mass[1:4] Mass of links
double m_inertia[1:4] Inertia of links
int m_numpoints Number of plotting

points/animation
frames

double m_omega2 Constant angular
velocity for link 2

int m_trace Trace option for
animation

bool m_uscunit Option for SI or US
customary unit

239

m_rp and m_beta, which can be used to specify a
coupler, if one is attached to the fourbar. Other mem-
bers, such as m_mass and m_inertia refer to the
mass and inertia values of the individual links. These
parameters are essential in performing dynamic analysis.

3.2 Member functions

Most classes in the Ch Mechanism Toolkit contain both
private and public member functions. Private member
functions are often viewed as utility functions. They are
usually used by public member functions to perform a
specific task and to simplify the programming code.

3.2.1 Private member functions

The private member function of class CFourbar are listed
in Table 2. Most of these functions are used for gener-
ating animation data and dynamics analysis. Member
function m_grashofTest() determines whether or not the

fourbar is a Grashof linkage, and m_initialize() initializes
the private data members with default values.

3.2.2 Public member functions

Public member functions for various classes of the Ch
Mechanism Toolkit can be divided into two categories:
setup and analysis functions. The setup functions are
those used to assign values to the private data members.
They allow users to indicate the fourbar linkage to be
analyzed. The rest of the public member functions are
used to perform various analysis on the fourbar defined
by the setup functions.

Table 3 lists all the setup functions for class CFour-

bar. The most commonly used function among those
listed is member function setLinks(). The link lengths are
the parameters that define a fourbar linkage. For
example, the function prototype for member function
setLinks() is as follows.

Calling this member function would assign the val-
ues of r1, r2, r3, and r4 to data member m_r,
which is an array with four elements representing the
fourbar link lengths. The value of theta1 would be
stored in data member m_theta1. The other setup

functions behave in a similar manner. That is, they are
used to assign values to the respective data members.
Note that users do not need to call all the setup
functions when using class CFourbar. Only those
applicable to the desired analysis are required. For
example, if only the angular positions of the links are
desired, member function setCouplerPoint() does not
need to be called, since the coupler point is irrelevant in
the results.

Analysis functions available for class CFourbar are
listed in Table 4. These functions can perform a wide
range of tasks, ranging from kinematic analysis to
dynamic analysis of the fourbar. Asides from numerical
outputs, graphical outputs in the forms of plots and
animations are available. These graphical outputs
provide users with visual interpretations to enhance
their understanding of the mechanism. For example,
given the angular position of one link, member func-
tion angularPos() is used to calculate the angular po-
sition of the remaining links. On the other hand, given
angles of two moving links, member function getAn-

gle() calculates the angle of the remaining moving link.
Member function displayPosition() displays a configu-
ration of a fourbar linkage, whereas member function
displayPositions() displays multiple configurations of a
fourbar linkage. The animation feature allows users to
simulate the motion of various linkages so that they
can gain a better understanding of the behavior of the
mechanism.

Table 2 Private member functions of class CFourbar

Private member function Description

void
m_create
AnimationData()

Generate animation data

void m_create
AnimationDataForRC()

Generate animation
data for rocker-crank
mechanisms

void
m_drawAnimation()

Draw animation

void
m_forcesForGeneral()

Force analysis

void
m_forcesForRC()

Force analysis for
rocker-crank mechanisms

int m_grashofTest() Perform Grashof test
void m_initialize() Initialize data members
double m_newTheta() Angle increment function

for animation

Table 3 Setup functions of class CFourbar

Setup function Description

void
setCouplerPoint()

Define coupler point

void
setGravityCenter()

Define center of gravity
of links

void setInertia() Set inertia values of links
void setAngularVel() Set constant angular velocity

of input link, h2
int setLinks() Set link lengths and h1
void setMass() Set mass values
void setNumPoints() Set number of plotting

points/animation frames

240

Member functions in Table 5 are used for analysis
and plotting of position, velocity, acceleration, and force
when the input link 2 rotates with a constant angular
velocity.

4 Program structure

Figure 4 shows the general form of programs utilizing
the Ch Mechanism Toolkit. The program structure is
quite simple and straightforward. The first step in writ-
ing a program for mechanism analysis is to include rel-
evant header files. For example, header file fourbar.h is
included in any program written for fourbar analysis.
The next step is to declare the necessary variables,
including variables for parameter values as well as re-
sults. In the variable declaration, an object of the desired
class should be instantiated. In Fig. 4, the line

instantiates an object of class CFourbar called
fourbar. Once this is done, member functions for
specifying and analyzing the fourbar can be called. To
correctly perform the analysis, however, all the neces-
sary setup function(s) should be called prior to the
analysis function(s). Otherwise, the results from the
analysis may be incorrect. Default values for specifying a
fourbar linkage are used in the calculations if the user
does not specify them.

5 Application examples using Ch Mechanism Toolkit

In this section, three examples are presented to illustrate
features and applications of the Ch Mechanism Toolkit.

5.1 Example 1

Problem statement: The link lengths of a fourbar link-
age in Fig. 3 are given as follows: r1=12 cm, r2=4 cm,
r3=12 cm, and r4=7 cm. The phase angle for the
ground link is h1=10�. The coupler point P is defined

Table 4 Analysis functions of class CFourbar

Analysis function Description

int angularAccel() Angular acceleration analysis
int angularPos() Angular position analysis
int angularVel() Angular velocity analysis
int animation() Simulate motion of fourbar
void
couplerCurve()

Calculate coordinates
of coupler curve

double complex
coupler
PointAccel()

Calculate coupler point
acceleration

void
couplerPointPos()

Calculate coupler point position

double complex
couplerPointVel()

Calculate coupler point velocity

int
displayPosition()

Display a configuration of
fourbar linkage

int
displayPositions()

Display multiple configurations
of fourbar linkage

int getAngle() Calculate a joint angle
int
getJointLimits()

Calculate joint limits for input
and output links

int grashof() Determine the type of fourbar
linkage

void forceTorque() Calculate joint forces
and output torque

void
plotCouplerCurve()

Plot coupler curve

void
plotTransAngles()

Plot transmission angles

int
printJointLimits()

Print joint limits for input
and output links

int synthesis() Synthesis for fourbar linkage
void transAngle() Calculate a transmission angle
void transAngles() Calculate transmission angles
void uscUnit() Specify SI or US

customary unit

Table 5 Analysis functions of class CFourbar for a constant
angular velocity of input link 2

Analysis function Description

int angularAccels() Angular acceleration analysis
int angularPoss() Angular position analysis
int angularVels() Angular velocity analysis
int forceTorques() Calculate joint forces and

output torques
void
plotAngularAccels()

Plot angular acceleration

void
plotAngularPoss()

Plot angular position

void
plotAngularVels()

Plot angular velocity

void
plotForceTorques()

Plot joint forces and
output torques

Fig. 4 Program structure for using Ch Mechanism Toolkit

241

by the distance r_p=5 cm and constant angle b=20�.
Determine the angular positions h3 and h4 as well as
the position for coupler point P when the input angle
h2=70�. Plot the coupler curve for the coupler point P
when input link 2 is rotated from h2min to h2max. Also
displays the current configuration of the fourbar link-
age.

The above problem is solved with the Ch Mecha-
nism Toolkit. Using the program structure shown in

Fig. 4 as reference, Program 1 is a solution to the given
problem. After instantiating an object of class CFour-

bar and declaring the necessary variables, member
functions setLinks() and setCouplerPoint() are called to
define the fourbar linkage with the given parameters.
The desired results are then obtained through function
calls to angularPos(), couplerPointPos(), plotCoupler-

Curve(), and displayPosition(). Figures 5 and 6 from
Program 1 are the configuration and coupler curve for
the first branch of the fourbar linkage, respectively.
Figures 7 and 8 are the configuration and coupler curve
for the second branch of the fourbar linkage, respec-
tively. The numerical results of Program 1 are given
below.

Fig. 5 The configuration for the first branch of the fourbar linkage

0

1

2

3

4

5

6

7

8

-2 -1 0 1 2 3 4 5 6 7

P
y

(m
)

Px (m)

Coupler curve

Fig. 6 The coupler curve for the first branch of the fourbar linkage

Fig. 7 The configuration for the second branch of the fourbar
linkage

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

P
y

(m
)

Px (m)

Coupler curve

Fig. 8 The coupler curve for the second branch of the fourbar
linkage

242

5.2 Example 2

Problem statement: The link lengths of a fourbar linkage
in Fig. 3 are given as follows: r1=12 cm, r2=4 cm,
r3=12 cm, and r4=7 cm. The phase angle for the
ground link is h1=10�, and the constant angular velocity
of the input link is x2=5 rad/sec. Plot the angular
positions, velocities, and accelerations of links 3 and 4
with respect to time for the first branch.

Using the plotting features of the Ch Mechanism
Toolkit, this problem is solved by Program 2. After links
r1 to r4 and phase angle h1 have been set, member
function setAngularVel() is called to specify the constant
angular velocity x2. To indicate the number of data
points to plot, member function setNumPoints() is re-
quired. Member functions plotAngularPoss(), plotAngu-
larVels(), and plotAngularAccels() are then used to
generate the desired results. Angular position, velocity,

and acceleration plots for links 3 and 4 are shown in
Figs. 9, 10, and 11. These plots allow users to better
understand how the coupler and output links behave
with respect to time and a constant angular velocity
applied to the input link.

Another member function, plotForceTorques(), can be
used to plot the individual joint forces and output torque
of the fourbar linkage. This function is similar to the
angular position, velocity, and acceleration plotting
functions. However, it requires additional parameter
values such as themass and inertia properties of each link.

5.3 Example 3

Problem statement: Simulate the motion of the fourbar
linkage defined in Example 1 for its entire range of
motion.

Program 1 Solution program for Example 1

243

Fig. 9 Angular position plots Fig. 10 Angular velocity plots

Program 2 Solution program
for Example 2

Program 3 Solution program
for Example 3

244

Similar to the first example, this problem is easily
solved with the Ch Mechanism Toolkit. Program 3 is
used to create an animation of the fourbar. Notice that
Program 3 is similar to Program 1. The primary differ-
ence is that Program 3 calls member function anima-

tion() instead of angularPos(), couplerPointPos(), and
displayPosition() to obtain the desired output. Another
difference is that there is an additional argument in
member function setCouplerPoint(). This third argu-
ment, TRACE_ON, is a macro used to specify tracing
of the coupler point. Note that the member function
animation() contains a single integer argument. This
number refers to the branch number of the fourbar
linkage. Depending on its type, a fourbar linkage may
have up to four branches. Since the fourbar defined in
the problem statement is a Grashof crank-rocker, it has

only two branches. Figure 12 shows one frame of ani-
mation for the first branch of the fourbar mechanism,
whereas Fig. 13 is an overlay of all the frames of ani-
mation. Likewise, Fig. 14 is one frame of animation of
the second branch, and Fig. 15 shows all of the anima-
tion frames.

6 Conclusion

An object-based mechanism toolkit has been developed.
The toolkit consists of animation program QuickAni-
mationTM and a collection of classes for design and
analysis of commonly used planar mechanisms. Written
in Ch, a C/C++ interpreter, the Ch Mechanism Toolkit

Fig. 12 Single frame of fourbar animation for the first branch

Fig. 11 Angular acceleration plots

Fig. 13 All frames of fourbar animation for the first branch

Fig. 14 Single frame of fourbar animation for the second branch

245

is useful for solving practical engineering problems in
design and analysis of mechanisms. It can compute the
angular positions, velocities, and accelerations of the
individual links of mechanisms such as the fourbar,
slidercrank, geared-fivebar mechanisms, sixbar linkages,
and cam-follower systems. Furthermore, graphical fea-
tures such as high-level plotting and animation enhance
the toolkit’s applicability in engineering practice, and
teaching and learning of mechanism design and analysis.
The object-based design makes the Ch Mechanism
Toolkit easy to extend and maintain. A Web-based
mechanism design and analysis system based on this Ch
Mechanism Toolkit has been developed. The ideas and
concepts presented in the Ch Mechanism Toolkit can be
applied to solve many other mechanism design and
analysis problems.

References

1. Working Model User’s Guide (1989) Knowledge revolution
2. Erdman AG, Gustafson JE (1981) Lincages: linkage interactive

computer analysis and graphically enhanced synthesis package.
ASME Paper, no. 77-DET-5

3. Erdman AG, Riley DR (1981) Computer-aided linkage design
using the lincages package. ASME Paper, no. 81-DET-121

4. WATT 1.6 User’s Guide (2002) Heron technologies. [Online].
Available at http://www.heron-technologies.com

5. SAM 5.0 User’s Guide (2003) Artas—engineering software.
[Online]. Available at http://www.artas.nl

6. Perez A, Su HJ, McCarthy M (2004) Synthetica 2.0: software
for the synthesis of constrained serial chains. In: Proceedings of
the ASME design engineering technical conferences, no.
DETC2004/57524, Salt Lake City, September 2004

7. Autolev. Online Dynamics, Inc. [Online]. Available at http://
www.autolev.com

8. Using Ch with Autolev to solve dynamics equations. [Online].
Available at http://iel.ucdavis.edu/projects/autolev

9. Ch Mechanism Toolkit, Softintegration, Inc. [Online]. Avail-
able at http://www.softintegration.com/products/toolkit/
mechanism/

10. Cheng HH (1993) Scientific computing in the Ch programming
language. Sci Program 2(3):49–75

11. — (2006) Ch: a C/C++ interpreter for script computing. C/
C++ User’s J 24(1):6–12

12. Ch—an Embeddable C/C++ Interpreter. [Online]. Available
at http://www.softintegration.com

13. Zhu Y, Chen B, Cheng HH (2003) An object-based software
package for interactive control system design and analysis.
ASME Trans J Comput Inf Sci Eng 3(4):366–371

14. Yu Q, Chen B, Cheng HH (2004) Web-based control system
design and analysis. IEEE Control Syst Mag 24(3):45–57

15. Cheng HH (1994) Pedagogically effective programming envi-
ronment for teaching mechanism design. Comput Appl Eng
Educ 2(1):23–39

16. Cheng HH, Campbell M (2005) Effective teaching of computer
integrated mechanism analysis and design. In: Proceedings of
the ASME 29th mechanism and robotics conference, no.
DETC2005-85565, Long Beach, California, September 2005

17. Design and Analysis of Whitworth Quick Return Mechanism.
[Online]. Available at http://iel.ucdavis.edu/projects/mecha-
nism/quickreturn

18. Cheng HH, Trang DT (2004) Web-based mechanism design
and analysis. In: Proceedings of the ASME 28th mechanism
and robotics conference, no. DETC2004-57594, Salt Lake City,
Utah, September 2004

19. Web-Based Mechanism Design and Analysis, Softintegration,
Inc. [Online]. Available at http://softintegration.com/webser-
vices/mechanism/

20. Pennestri E. Kinematic Synthesis of Mechanisms. [Online].
Available at http://www.ingegneriameccanica.org/mecha-
nisms.htm

21. Embedded Ch, Softintegration, Inc. [Online]. Available at
http://www.softintegration.com/products/sdk/embedded_ch/

Fig. 15 All frames of fourbar animation for the second branch

246

	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Fig1
	Sec6
	Fig2
	Fig3
	Tab1
	Sec7
	Sec8
	Sec9
	Tab2
	Tab3
	Figa
	Sec10
	Sec11
	Sec12
	Tab4
	Tab5
	Fig4
	Fig5
	Fig6
	Fig7
	Fig8
	Sec13
	Sec14
	Taba
	Fig9
	Fig10
	Tabb
	Tabc
	Sec15
	Fig12
	Fig11
	Fig13
	Fig14
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	Fig15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

