
For some tasks, C and its compile/
link/execute/debug process are not pro-
ductive. As computer hardware be-

comes cheaper and faster, to be productive
and cost effective, script computing in C/C++
can be an appealing solution. To this end, we
have developed Ch, an embeddable C/C++
interpreter for cross-platform scripting, shell
programming, 2D/3D plotting, numerical
computing, and embedded scripting [1].

As a complete C interpreter, Ch supports
all language features and standard libraries of
the ISO C90 Standard. It also supports an
increasing number of C/C++ libraries including
POSIX, TCP/IP socket, Winsock, Win32,
X11/Motif, GTK+, OpenGL, ODBC, SQLite,
CGI, LAPACK, LDAP, PCRE, Gnome
Libxml2, Oracle XDK for XML, NAG
statistics library, Intel OpenCV for computer
vision, ImageMagick for image processing,
SigLib for signal processing, National
Instruments’ NI-DAQ, and NI-Motion.

Ch supports most new features added in
the ISO C99, such as complex numbers,
variable length arrays (VLA), IEEE floating-
point arithmetic, and type-generic
mathematical functions. C programmers are
encouraged to use these new features because
they significantly simplify many programming
tasks. Ch also supports classes in C++ for
object-based programming.

Ch has borrowed features and ideas from
many other languages and software packages.
The following is a short list of other
languages and software packages that in one
way or another have influenced the
development of Ch.

• Like the C shell, Ch can be used as a login
shell and for shell programming. But, as a su-
perset of C, Ch is a genuine C shell. 

• Like Basic, Ch is designed for, and has been
used by, beginners who have no prior pro-
gramming experience.

• Like Perl, Ch has the built-in string and oth-
er features for text handling, and can be used
for common gateway interface (CGI) appli-
cations in a web-server environment.

• Like Java, Ch can be used for Internet com-
puting. Safe Ch uses a sandbox model for se-
curity control. A Ch applet can be executed
across a network on different computer plat-
forms on the fly.

• Like Tcl/TK, Ch can be embedded as a script-
ing engine in other applications and supports
GTK+, Win32, and X/Motif for GUI devel-
opment.

• Like Fortran 90, Ch can be used for scientif-
ic computing.

• Like MATLAB/Mathematica, Ch has com-
putational arrays and can be used for numer-
ical computing, graphical plotting, and rapid
prototyping.

The relationship of Ch to some of these
languages and software packages is shown in
Figure 1.

Unlike other languages and software
packages, Ch bridges the gap between low-
level languages and very high-level languages.
As a superset of C, Ch retains low-level
features of C such as accessing memory for
hardware interface. However, unlike C, Ch
can be considered a very high-level language
(VHLL) environment. It makes hard things
easy and easy things easier. Ch extends C
with many high-level features such as string

type and computational arrays as first-class
objects, as in Fortran 90 and MATLAB for
linear algebra and matrix computations. Ch
supports shell programming with a built-in
string type. Some problems, which might take
thousands of lines of C code, can be easily
solved with only a few lines of Ch code.

Furthermore, Ch is designed to be platform
independent. It can run in a heterogeneous
computing environment with different
computer hardware and operating systems
including Windows, Mac OS X, Linux in both
Intel and PPC architectures, UNIX, FreeBSD,
and QNX. A program developed in one
platform can run in any other platforms.

In this article, I will present some unique
features offered by this C/C++ interpreter for
script computing and illustrate how they are
used in applications. Examples presented are
portable across different platforms. One can
readily try these examples by downloading
Ch from http://www.softintegration.com/.

Interactive Execution 
Of C/C++ Statements 
And Expressions
I regularly teach engineering students on
introductory computer programming in C. I
use Ch interactively in classroom presentations
using a laptop. Ch allows me to illustrate
programming features quickly, especially in
answering students’ questions. Learners can
also quickly try out different features of C
without tedious compile/link/execute/debug
cycles. To help beginners learn, Ch has been
specially developed with many helpful
warning and error messages, as an alternative
to crashing with cryptic, arcane messages like
“segmentation fault” and “bus error.”

All C statements and expressions can be
executed interactively in a Ch command shell
as shown in Figure 2. The output from the
system resulting from executing an expression,
statement, or command in Ch is displayed on
the screen. For example, the output “Hello,
world” can be obtained by calling function

6 • C/C++ Users Journal   • www.cuj.com   • January 2006

Harry H. Cheng is a Professor and Director
of the Integration Engineering Laboratory at
the University of California, Davis. He is the
Chief Architect of Ch, an embeddable C/C++
interpreter for script computing. He can be
reached at hhcheng@ucdavis.edu.

Harry H. Cheng

Ch: A C/C++ Interpreter for
Script Computing
Interactive computing in C



printf() interactively as shown in Figure 2. Note that the semicolon
at the end of a statement in a C program is optional when the
corresponding statement is executed in command mode. There is no
semicolon in calling function printf in the previous execution. The
default prompt in a Ch shell can be reconfigured. For simplicity, I’ll
only show the prompt > in a Ch command shell for the rest of this
article.

If a C expression is typed in, it will be evaluated by Ch. The result
will then be displayed on the screen. For example, if the expression
1+3*2 is typed in, the output will be 7, as shown:

> 1+3*2 
7

Any valid C expression can be evaluated in a Ch shell. Therefore,
Ch can be conveniently used as a calculator. As another example, one
can declare a variable at the prompt, then use the variable in the
subsequent calculations:

> int i 
> sizeof(int) 
4 
> i = 30 
30 
> printf("%x", i) 
1e 
> printf("%b", i) 
11110 
> i = 0b11110 
30 
> i = 0x1E 
30 
> i = -2 
-2 
> printf("%b", i) 
11111111111111111111111111111110 
> printf("%32b", 2) 
00000000000000000000000000000010 

In these C statements, variable i is declared as int type with 4
bytes. Then, the integer value 30 for i is then displayed in decimal,
hexadecimal, and binary numbers. The integral constants in different
number systems can also be assigned to variable i. The 2’s complement
representation of the negative number –2 is displayed as well.
Characteristics for all other data types in C can also be presented
interactively. Different format specifiers for the families of input
function fscanf() and output function fprintf() using file streams
opened by function fopen() can also be tried out this way. All C
operators can be used interactively: 

> int i=0b100, j = 0b1001 
> i << 1 
8 
> printf("%b", i|j) 
1101 

The concept of pointers and addresses of variables can be illustrated
as shown: 

> int i=10, *p 
> &i 
1eddf0 
> p = &i 
1eddf0 
> *p 

10 
> *p = 20 
20 
> i 
20 

In this example, the variable p of pointer to int points to the
variable i. The relation of arrays and pointers can be illustrated as
follows:

> int a[5] = {10,20,30,40,50}, *p; 
> a 
1eb438 
> &a[0] 
1eb438 
> a[1] 
20 
> *(a+1) 
20 
> p = a+1 
1eb43c 
> *p 
20 
> p[0] 
20 

Expressions a[1], *(a+1), *p, and p[0] all refer to the same element.
Multidimensional arrays can also be handled interactively. The
boundary of an array is checked in Ch to detect potential bugs; see
Example 1.

The allowed indices for array a of 5 elments are from 0 to 4. Array
s can only hold 5 characters including a null character. Ch can catch
bugs of existing C code related to the array boundary overrun. The
alignment of a C structure or C++ class can also be examined as
shown:

> struct tag {int i; double d;} s 
> s.i =20 

8 • C/C++ Users Journal   • www.cuj.com   • January 2006

Ch: A C/C++ Interpreter for Script Computing Harry H. Cheng

(continued from page 6)
Figure 1: Relationship of Ch to some other languages and
software packages.

Figure 2: The user interface in a Ch command shell.



20 
> s 
.i = 20 
.d = 0.0000 
> sizeof(s) 
16 

In this example, although the sizes of int and double are 4 and 8,
respectively, the size of structure s with two fields of int and double
types is 16, instead of 12, for the proper alignment.

Interactive and Interpretive Execution 
Of C/C++ Functions and Programs 
Not only C statements and expressions, but also C functions and
programs can be interactively executed in Ch. All functions in the
C standard libraries can be executed interactively and can be used
inside user-defined functions. For example, in Example 2, the
random number generator function rand() is seeded with a time
value in srand(time(NULL). Function add(), which calls type-generic
mathematical function sin(), is defined at the prompt and then used.
A function can also be invoked from a function file. A function file
in Ch is a file with the extension .chf that contains only one function
definition. The names of the function file and function definition
inside the function file must be the same. A function is searched
based on the search paths in the system variable _fpath for function
files. The system variables can be setup in the startup configuration
file .chrc for UNIX and chrc in Windows in the user’s home
directory. For example, Listing 1 is the function file addition.chf
for function addition(). If file addition.chf is located in a directory
specified in fpath, function addition() can be used inside a program
or command line:

> int i = 10 
> i = addition(10, i) 
20 

All functions, including function main(), in C are at the same level;
functions cannot be defined inside other functions. In other words,
there are no internal procedures in C. Ch extends C with nested
functions. A function can define other functions inside itself. For
example, the nested function nestedfunc() defined in Listing 2 can
be executed interactively as follows: 

> nestedfunc(10, 20) 
60 

where function innerfunc() is defined inside function nestedfunc().
With nested functions, details of one functional module can be
hidden from the other modules that do not need to know about
them. Each module can be studied independent of others. Software
maintenance is the major cost of a program. People who were not
involved in the original design often do the most program
maintenance. Nested functions modularize a program, thus clarifying
the whole program and easing the pain of making changes to
modules written by others. Nested functions are useful for
information hiding and modular programming. They are
complementary to data encapsulation in object-oriented
programming in C++. In some applications, using nested functions
is simpler than using member functions of classes.

Classes and some other C++ features are also supported in Ch
for interactive execution of C++ code, as shown in Example 3. The
input and output can be handled using cin and cout in C++. The
public method tagc::set() sets the private member field m i, whereas
the public method tagc::get() gets its value. The argument of
method tagc::get() is passed by reference. The size of the class
tagc is 4 bytes, which does not include the memory for member
functions.

C/C++ programs can also be executed interactively without
compilation. For example, to run the program hello.c in Listing 3,
one can type the command hello.c in a Ch command shell to get the
output of “Hello, world”:

> hello.c 
Hello, world 

10 • C/C++ Users Journal   • www.cuj.com   • January 2006

Ch: A C/C++ Interpreter for Script Computing Harry H. Cheng

(continued from page 8)

> int a[5] = {10,20,30,40,50} 
> a[-1] 
WARNING: subscript value -1 less than lower limit 0 
10 
> a[5] 
WARNING: subscript value 5 greater than upper limit 4 
50 
> char s[5] 
> strcpy(s, "abc") 
abc 
> s 
abc 
> strcpy(s, "ABCDE") 
ERROR: string length s1 is less than s2 in strcpy(s1,s2) 
ABCD 
> s 
ABCD

Example 1: Array-boundary checking in Ch.

> srand(time(NULL)) 
> rand() 
4497 
> rand() 
11439 
> double add(double a, double b) {double c; return a+b+sin(1.5);} 
> double c 
> c = add(10.0, 20) 
30.9975 

Example 2: Using C Standard Library functions from the
command line.

Figure 3: Editing and running a program using ChSciTE IDE.



Harry H. Cheng Ch: A C/C++ Interpreter for Script Computing

Ch finds executable commands in
directories specified in the system variable
_path. From other command shells, program
hello.c can be executed in Ch without
compilation, as follows:

% ch hello.c 

C/C++ programs can also run in Ch from
an Integrated Development Environment (IDE)
with a graphical user interface (GUI). Many
IDEs, including the open-source ChSciTE IDE
shown in Figure 3, support Ch by default.
ChSciTE has a native graphical user interface
in more than 30 localized languages.

To speed up interpretive execution of a C
program, one should try to avoid loops in the
program. For scientific numerical computations,
one can use computational arrays described in
the next section for fast execution of algorithms
with arrays. Alternatively, the code that is
computationally intensive in a script program
can be compiled as a binary module. In general,
you may find it is necessary to interface binary
modules in the following situations:

• The source code of a C/C++ library is not
available. 

• To run Ch scripts fast by making the fre-
quently called underlying C/C++ functions a
binary library. 

• To protect the intellectual property and source
code from being revealed. 

Ch Software Development Kit (SDK)
included in the distribution of Ch allows
C/C++ scripts (Ch scripts) to interface C/C++
binary libraries without recompilation. C
functions dlopen(), dlsym(), dlerror(),
dlclose() and Ch extension function
dlrunfun() are used to dynamically load
binary modules. They allow Ch scripts to
access global variables or call functions in the
compiled C/C++ libraries such as static
library, shared library, or Dynamically Linked
Library (DLL). Ch scripts can callback Ch
functions from C/C++ libraries. There is no
distinction between the interpreted and
compiled code.

The Ch SDK provides a utility to generate
wrappers for Ch to interface C/C++ libraries
automatically. Ch SDK has been effectively
used to interface with standard C libraries
such as POSIX, X11/Motif, Win32, GTK+,
OpenGL, and ODBC.

January 2006 • C/C++ Users Journal   • www.cuj.com   • 11

/* File: addition.chf */ 
int addition(int a, int b) { 
int c; 
c = a + b; 
return c; 
}

Listing 1

/* File: nestedfunc.chf */ 
int nestedfunc(int a, int b) { 
int innerfunc(int i, int j) { 
int k; 
k = 2*(i+j); 
return k; 
} 
int c; 
c = innerfunc(a, b); 
return c; 
} 

Listing 2

/* File: hello.c */ 
#include <stdio.h> 
int main() { 
printf("Hello, world\n"); 
return 0; 
}

Listing 3



Ch: A C/C++ Interpreter for Script Computing Harry H. Cheng

The interpretive execution of C functions
and programs is suitable for applications that
do not take very much CPU time. Unlike other
scripting languages, as a superset of C, Ch is
particularly suitable for applications that need
to interface to hardware, such as automated
hardware testing and diagnosis.

The interpretive execution of C functions
and programs is ideal for rapid prototyping.
Programs can be first developed and tested in

Ch. Later, the same code can be compiled in
C or C++ compiler for final production.
Applications with tens of thousands of lines
using functions in libraries such as POSIX,
X11/Motif, Win32, GTK+, OpenGL, and
ODBC can also effectively run in Ch.

The program compilation presents a serious
problem for real-time manipulation of
mechatronic systems. For real-time mechatronic
systems, the external environment may be

different at each execution, so the testing scenario
may not be repeatable. During debugging and
testing, it is impractical to restart a program from
the very beginning every time a change is made
or a problem is diagnosed. Ch is time
deterministic. It can be used for control of
mechatronic systems such as robotics. In a
typical real-time application in RTLinux, a hard
real-time module runs in the Linux kernel, Ch
runs in the user space and communicates with
the real-time module through interprocess
communication such as FIFO.

The interpretive execution of C programs
is especially suitable for interactive
presentations using a laptop in a classroom
with a quick response. With an interactive
computing environment, instructors can relieve
themselves from tedious compile/link/exe-
cute/debug cycles, and focus on teaching the
knowledge and problem-solving skills. All
sample code in a textbook for teaching
computer programming in C can readily run
in Ch without modification.

Ch is especially suitable for developing web-
based interactive content in engineering and
science for general applications and distance
learning. For example, web-based design and
analysis of control systems and mechanisms
have been developed and they are available
online at http://www.softintegration.com/
webservices. The shopping cart on this site was
also developed in Ch.

Conclusion 
Ch is a complete C interpreter. It supports
most new features added in C99 and classes
in C++. Ch is embeddable in other
applications as a C/C++ scripting engine. It
is ideal for cross-platform scripting, shell
programming, 2D/3D plotting, numerical
computing, and embedded scripting.
C/Ch/C++ allow users to use one language,
anywhere and everywhere, for any
programming tasks. Ch lowers the barrier for
system programmers to do scripting. Whether
you are a novice computer user or
experienced C/C++ programmer, I hope that
Ch will make your programming tasks more
enjoyable.

Acknowledgment 
I would like to thank Tom MacDonald for his
suggestions and comments on this article.

Reference 
[1] Ch: An Embeddable C/C++ Interpreter,

http://www.softintegration.com/. ❑

12 • C/C++ Users Journal   • www.cuj.com   • January 2006

> int i 
> cin >> i 
10 
> cout << i 
10 
> class tagc {private: int m_i; public: void set(int); int get(int &);} 
> void tagc::set(int i) {m_i = 2*i;} 
> int tagc::get(int &i) {i++; return m_i;} 
> tagc c 
> c.set(20) 
> c.get(i) 
40 
> i 
11 
> sizeof(tagc) 
4 

Example 3: Some C++ features are supported in Ch for interactive execution of
C++ code.


