I nteractive motion control using Ch - an embeddable C/C++ inter preter
Stephen S Nestinger; Harry H Cheng
Assembly Automation; 2004; 24, 2; ABI/INFORM Global

pg. 152

Emerald

Interactive motion
control using Ch - an
embeddable C/C++

interpreter

Stephen S. Nestinger and
Harry H. Cheng

The authors

Stephen S. Nestinger and Harry H. Cheng are based at the
Integration Engineering Laboratory, Department of
Mechanical and Aeronautical Engineering, University of
California, Davis, CA, USA.

Assembly, Motion, Programming languages

A flexible agile assembly system requires an open
architecture integration environment that is mechatronic
device and computer platform independent. An interactive
environment allows the users to step through programs and
acquire immediate feedback from the system and is most
suitable for the development of mechatronic systems used on
the shop floor. Ch, an embeddable C/C++ interpreter, was
developed for mechatronic-independent task-level
programming. An experimental mechatronic system with an
IBM 7575 Robotic Arm and a National Instruments’ motion
control board has been developed to demonstrate the
capabilities and the ease in integrating mechatronic devices
in Ch, which is freely available for downloading.

Electronic access

The Emerald Research Register for this journal is
available at
www.emeraldinsight.com/researchregister

The current issue and full text archive of this journal is
available at
www.emeraldinsight.com/0144-5154.htm

Assembly Automation

Volume 24 - Number 2 - 2004 - pp. 152-158
© Emerald Group Publishing Limited - ISSN 0144-5154
DOI 10.1108/01445150410529928

1. Introduction

In the world of manufacturing, the assembly of
new products is not as easy as it used to be.
Typical assemblies nowadays have hundreds or
more parts and so require more operations.
Automating the operations can become
challenging when dealing with different
mechatronic devices from different
manufacturers since each manufacture often
has their own interface language. Industry
solution providers often find themselves in a
dilemma. They can either purchase all
mechatronic equipment and devices from one
manufacturer, limiting the overall design
possibilities or purchase the equipment from
multiple manufacturers, relying on the
production engineers to work out how to
operate each device. One way of overcoming
this problem is utilizing a mechatronic
independent motion language. A congenial
programming language environment is critical
for rapid integration of mechatronic devices into
an assembly system.

Integrated mechatronic systems are typically
based on an open-architecture system. By
definition, an open-architecture provides open
access to real-time data and information that
can be used to allow vertical integration of
machines within the enterprise, and is critical
to agile manufacturing. The use of open-
architectures is seen as vital to improve
manufacturing within numerous industry
groups (Cheng, 2001; Wright and Greenfeld,
1990).

Research and application experience of
assembly systems indicate that an ideal
programming language for assembly systems
must be a sophisticated computer programming
language. The language should appeal to both
sophisticated expert programmers and novice
users. In typical cases, sophisticated users will
write high-level functions that can be readily
used by less experienced users. The language
should support multi-task processing allowing
for the control of multiple mechatronic systems
and should provide an open-architecture
environment. The language should also include
a user-friendly graphical interface. Ch is a
C/C++ interpreter that was originally developed
by Cheng (1993, 1997) based on the need for a
mechatronic-independent task-level

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interactive motion control using Ch — an embeddable C/C++ interpreter

Stephen S. Nestinger and Harry H. Cheng

programming environment. Ch is an open
architecture integration language environment
for the integration of mechatronic systems in
agile manufacturing, interactive motion control,
rapid prototyping, web-based remote motion
control, and as a learning tool for motion
control. Ch supports GTK+ and OpenGL with
a user-friendly graphical interface across
different platforms. Note that an entirely visual
based programming environment without a
base of procedural programming language is
difficult to program for complicated
manufacturing tasks, especially for sensor
fusion. Ch is available free for downloading
from SoftIntegration (SoftIntegration, Inc.,
2004a).

This paper discusses the interactive open
architecture environment, Ch, and its multitude
of applications. It then discusses the ability to
integrate new mechatronic device through the
use of Ch SDK. An example using an IBM 7575
Robotic Arm Manipulator and one of National
Instruments widely used motion control boards
is given.

2. Ch - a C/C++ interpreter

Ch is an extension and enhancement of the
most popular Unix/Windows/C computing
environment. The relation between Ch and
other major computer programming languages
and software packages can be shown in Figure 1.
Ch is a superset of C. Many features first
implemented in Ch were added to the latest C
standard called C99. These features include

Figure 1 Relation of Ch with other major languages

Soidava
C++

Matlab

C shell
Fortran

Assembly Automation
Volume 24 - Number 2 - 2004 - 152-158

complex numbers, variable-length array (VLA),
binary constants, and function name

_ func___. Ch also supports computational
arrays as first-class objects as in FORTRAN 90
and MATLAB for linear algebra and matrix
computations which greatly simplifies the
forward and reverse kinematics required for
multi-linkage motion system. Furthermore,

Ch supports all features of the ISO C90
standard ratified in 1990.

From a user’s application point of view, Ch is
computer platform independent, mechatronic
device independent, and mechatronic system
independent. A program developed in one
platform can run on any other platform.

This allows Ch users the ability to port

programs to any computing environment

instead of compiling and linking computer

programs on different systems. Experienced C

programmers can readily use the system without

retraining. Ch also has networking features such

as Berkeley sockets and restricted/safe Ch shell

that provide both flexibility and security for

the remote operation of mechatronic systems.

Ch is especially suitable for Web-based

client/server computing. Ch programs can be

used through a common gateway interface

(CGI) in the Web server and as dynamic

applets executed through the Web browser.

Some salient and important features of Ch

for mechatronic integration for assembly

systems are as follows:

* Deterministic for real-time computing;

* Interpretive;

* Interactive user interface;

¢ Superset of an established language;

* Based-on an open language with
international standard;

* Object-based;

* Graphic user interface;

* Supported in heterogeneous platforms;

* Code portable across-different platforms;

* Secure network computing;

* Advanced numerical computing with
matrix; and

* Interface binary objects.

Using Ch’s plug-and-play integration language
environment, a new mechatronic system can be
quickly developed in the same manner as a
UNIX or Windows software installed in a
computer. As a superset of C, Ch retains

153

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interactive motion control using Ch — an embeddable C/C++ interpreter

Stephen S. Nestinger and Harry H. Cheng

C’s low-level features for interfacing to
hardware. Because Ch is implemented as a
shell, a large collection of existing utilities and
C programs can be readily used for integration
of mechatronic systems. Based upon the
concept of shell programming, the Ch
integration environment is open, modular,

and scalable. Software for integration of
mechatronic systems are not created by writing
large programs starting from scratch, but are
created by combining relatively small
components. Functions, commands, and scripts
are the basic building blocks for the integration
of mechatronic systems. These programs can be
created and executed dynamically based on the
external sensory information, which can be
critical to the intelligence of a mechatronic and
assembly system.

3. Interactive motion control in Ch

Mechatronic systems have become a valuable
part of every manufacturing industry.

Each mechatronic system utilizes its own
language or communication device in order to
be controlled. For example, typical robotic
systems come prepackaged with their own
robotic language and many motion controller
boards available on the market today utilize
their own language to control any system
attached to it. Creating a workcell made

of multiple mechatronic systems can be
difficult and tedious due to all of the

different languages that must be utilized.
Manufacturing companies typically purchase
equipment from the same company which
reduces the need to learn new mechatronic
system languages. This can impede the abilities
of the manufacturing company by limiting
their ability to purchase mechatronic systems
that can further help their business or to
improve it. Using Ch, all mechatronic systems
can be controlled under the C/C++ language
and one environment.

The control of any mechatronic system is
done using the available C libraries and functions
from the system’s manufacturer. Ch Software
Development Kit (SDK) (SoftIntegration, Inc.,
2004b) allows users to port the C libraries and
functions into Ch space by creating Ch packages
that bind to the C space libraries and functions.

Assembly Automation
Volume 24 - Number 2 - 2004 - 152-158

Once that is done, the functions can be called
under Ch space with the same ease as user
defined functions. Figure 2, shows the
architecture overview of how Ch communicates
with a mechatronic system.

Once the libraries and functions have been
ported over to Ch and the Ch packages
created, there are three different ways users can
communicate with their mechatronic devices.
The first way is to utilize Ch’s ability to
interpret C/C++ at the prompt. Users can
simply type in function names and commands
at the prompt and control the mechatronic
system. This gives users interactive control of
their mechatronic system making debugging
and problem-solving easier. The second way,
after testing a system by interactively
controlling it, is to utilize Ch’s ability to
interpret C/C++ by placing the user’s
interactive code into a C/C++ file and running
that file as a program. C/C++ files can be
readily run at the prompt by typing in the name
of the file. The third way is to then compile
their programs into a binary executables
allowing users to create optimized programs.
An example using Ch for motion control is
given. The example deals with a National
Instruments’ Motion Controller Board and an
IBM 7575 Robot Manipulator.

4. Motion control using NI-Motion

NI-Motion is a motion control line
developed by National Instruments that
offers a complete selection of motion control
software, controllers, and power drives.
NI-Motion controllers range from
high-performance controllers with full-feature

Figure 2 The architecture of how Ch communicates with a mechatronic device

demo.ch —» serial_chdl.c

s

' ralic ==+
bhand.h ! g A
serial.h*] I

serial.h*

\ InitSerial.chf 7 \ /

Device API

Mechatronic

Device

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interactive motion control using Ch — an embeddable C/C++ interpreter

Stebhen S. Nestiné;r;n'd Harry H. Chéng

capabilities to lower-cost controllers used for
point-to-point motion applications. These
boards are also available for a multitude of
platforms. NI-Motion motion control software
comes with LABVIEW, Motion Assistant, a
motion control module for Measurement
Studio, and a wide array of drivers and
application development tools for Windows
2000/N'T/Me/9x. FlexMotion is the driver and
application development software bundle used
in conjunction with the FlexMotion controllers.
NI-Motion also offers a universal motion
interface (UMI) board to use in conjunction
with drives not manufactured by National
Instruments.

The Ch NIMotion package is an open source
Ch binding to National Instruments’
NI-Motion FlexMotion C library (National
Instruments, 1999). With Ch NIMotion, all
C (or C++) programs utilizing functions in
NI-Motion FlexMotion C library can readily
run in Ch interpretively without compilation.
The Ch NIMotion package is available at the
Ch NIMotion Web site (http://ChNIMotion.
sourceforge.net).

Figure 3 shows a general overview of the NI-
Motion/IBM 7575 Robotic Arm Manipulator
architecture.

An example of interactive motion control
using the Ch NIMotion package in the Ch
command shell is given below. These
commands will instruct the first axis to move to
position 10000. The initialization program
supplied with the package needs to be run first.
The initialization program will initialize the
board and enable the axis used.

Assembly Automation
Volume 24 - Number 2 - 2004 - 152-158

At the root directory type (hit enter at the end of
each line):
> parse c:lchlpackage/nimotion/include/
flexmotn. h
> u8 boardID = 1
> u8 axis = 1
> 132 targetPosition = 10000
> 132 CurrentPosition
> flex_read_pos_rtn(boardID, axis,
&CurrentPosition)
> CurrentPosition
> flex_load_target_pos(boardID, axis,
targetPosition, OxFF)
> flex_start(boardID, axis, 0)

These few lines of code show the ease of use in
controlling a mechatronic system under Ch. If
users prefer, they can create program files to run
later or compile for faster runtime capabilities.
The example program shown below will move
axis #1 of the IBM 7575 robotic arm
manipulator to a position specified by the user
at the prompt.

/I Preprocessing

#include “flexmotn.h”

Hinclude <stdio.h >

Hinclude < chplot.h >

Hdefine MAX 1000

nt main(void)

{

/I Variable Declaration

u8 boardID = 1;

u8 axis = 1;

132 status;

132 targetPosition = 0;

ul 6 axisStatus;

132 CurrentPosition;

Figure 3 The NI-Motion/IBM 7575 Robotic Arm Manipulator setup architecture

e S i e

X

L Computer CH J«—»

Program

PCI Bus

Controller Umli
Board

(NI Motion

IBM 7575
Controller

IBM 7575
Robotic Arm

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interactive motion control using Ch — an embeddable C/C++ interpreter

Stephen S. Nestinger and Harry H. Cheng

ul6 numberOfSamples = MAX;
ul 6 timelPeriod = 5;
132 velocity[MAX];
132 position[MAX];
132 XAxis[MAX];
132 returnData[2];
ul6 axisMap = 0x0002;
nt i;
mt j;
status = flex_read_pos_rtn(boardID, axis,
&CurrentPosition) ;
printf(“Current position of Axis 1: %d”,
CurrentPosition)
printf(“\w\nEnter Target Position:) ;
scanf(“%d”, &rargetPosition);
Jflush (stdin) ;
printf(“n”);
status = flex_load_target_pos(boardID, axis,
targetPosition, OxFE);
status = flex_acquire_trajectory_
data(boardID, axisMap,
numberOfSamples, timePeriod);
status = flex_start(boardID, axis, 0);
dof
status = flex_read_pos_rtn(boardID,
axis, &position) s
printf(“\rAxis %d position: %10d”, axis,
position)
status = flex_read_axis_status_
rtn(boardID, axis, &axisStatus);
Y while (! (axisStatus &
(NIMC_MOVE_COMPLETE_BIT \
NIMC_AXIS_OFF_BIT)));
=105
while((status = =NIMC_noError) &&
G < MAX))!
status = flex_read_trajectory_data_
rtn(boardID, returnData);
position[i] = returnData[0];
velocity[i] = returnData[l1];
XAxis[i] = 1,
i++3
h
132 X[i];
132 Telfi];
132 Pos[i];
JorG = 0;j<ij++H
Pos[j] = position[j];
Vel[j] = velocity[j];
X[1] = XAxis[j];
}

Assembly Automation
Volume 24 - Number 2 - 2004 - 152-158

plotxy (X[], Pos[], “Position vs. Time”,
“Time”, “Position”);
plotxy (X[], Vel[], “Velociry vs. Time”,

“Time”, “Velociry™);
printf(““\m\nFinished.\n>) ;
exit(0);

}

/* End of Program */

The preprocessing section of this program states
which header files to include. The flexmotn. h
header file contains all of the function
prototypes available from the FlexMotion
library. The chplot.h header file contains the
plotting class available in Ch. The plotting class
is used to plot the output of the program on the
screen or save the plot to a file. The MAX
variable is the amount of data samples to take
and store during the motion.

The variable initialization section is used to
setup the system required information and
create any required variables. The control
board identification number, boardID, is
used to tell the system what board number
to send the commands to. In this program,
the boardID is assumed to be 1. The axis
variable, axis, is used to tell the system what
axis is to be programmed. This program
assumes only the first axis will be used.

The status of the system is returned after
each function call and is stored in the srarus
variable. The starus variable is constantly
checked for signs of an error. The rargetPosition
variable is used to store the target position
specified at the prompt. The axisStarus variable
is used to store the status of the axes for
error control. The CurrentPosition variable is
used to store the current position of the axis.
The numberOfSamples variable is used to tell
the motion control board how many position
and velocity samples to take during the
motion. The #melPeriod variable is used

to tell the motion control board at what
interval to take data at the sample points.
The wvelocity/MAX], position[MAX], and
XAxisfMAX] arrays are used to store the
samples recorded during the motion after
they have been retrieved. The returnDataf2]
array variable is used to retrieve the sample
data. The axisMap variable is a bitmap of the
axes used. The integers ¢ and j are variables
used for looping purposes.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interactive motion control using Ch — an embeddable C/C++ interpreter

Stephen S. Nestinger and Harry H. Cheng

Each function will return the status of the
board after the function is called. If an error had
occurred, the error number would be stored in
the szarus variable for lookup purposes. This
program assumes that no errors will occur. The
variable, status, is only used when attaining
the data points acquired during the motion
of the system.

The program starts by reading the current
position of the system through the function
flex_read_pos_rtn. The function takes in the
board ID, the axis to be controlled, and the
address of the variable to store the current
position. The program then asks the user
to input a target position. After acquiring
the target position, the function
flex_load_target_pos loads it into the
specified board for the specified axis. The
flex_acquire_trajectory_dara function enables the
data acquisition ability of the board allowing it
to store the velocity and position of the system
in motion. The function takes it the board ID,
axis map, the number of samples to take, and
the time period of one sample. The flex_start
function starts the motion on the axis specified
through the axis map. A do loop is initiated
to continuously read the position of the axis
and print it to the screen until the motion
of that axis is completed. The function
flex_read_pos_rtn reads the current position of
the system and stores it in the current position
variable. The function flex_read_axis_status_rin
reads the current status of the axis. When the
motion is completed, the do-while loop is
terminated. A while loop is then initiated to
acquire all of the stored data samples. The
while loop will discontinue when the status of
the board gives an error indicating that there
are no more data points left or the maximum
allowed array subscript value defined in
the preprocessing section. The variable
recurnData sent with the function
flex_read_trajectory_data_rtn, which acquires
the data points from the controller board,
stores the velocity and the position of the
system at each time interval. The velocity and
position is then broken up into two different
arrays and an x-axis array is created for
plotting use. A for_loop is then initiated that
will remove any continuous zeros at the end of
the data points collected. Continuous zeros are
created when the time interval and time span

Assembly Automation
Volume 24 - Number 2 - 2004 - 152-158

specified last longer than the motion. The
continuous zeros are removed to show a nicer
plot of the velocity and position. The plotxy
function calls Ch’s internal plotting class to
plot the results.

Utilizing Ch’s plotting abilities and
NI-Motion’s ability to store position and
velocity information shown in Figure 4, were
created. The plots show the motion of a
system over time, the first giving the position
of the system and the second giving the
velocity.

Utilizing the remote capabilities of Ch,

a Web-site can be created to give any user
using a standard browser the ability to
control a motion system remotely while
still attaining any desired feedback such
as the previous plots. Web-based remote
motion control in Ch can be used as a
learning tool for people interested in
learning motion control.

5. Conclusions

This paper described the availability of Ch and
its use as a motion control environment. Ch
gives users the ability to control any motion
system. It gives users an edge over standard
applications since they are able to precisely
control the system through either a C program
run through the Ch interpreter or interactively
through the prompt. It also allows the user to
compile their software and form binary
programs that can be optimized to run faster.
Ch gives users considerable versatility and a
quick prototyping capability. Utilizing Ch’s
ability for web control, users can create a web
interface allowing web users to control
mechatronic systems through the Internet. An
example was given that showed the ease in
integrating and controlling an IBM 7575
Robotic Manipulator through the Ch via the
use of a National Instruments Motion
Controller. The open source Ch NIMotion
allows the user to control a multitude of axes
at the same time interactively. The ideas and
principles presented for open architecture
interactive motion control using a C/C++
interpreter are applicable to any control board
so long as it can be controlled using a C
library.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interactive motion control using Ch — an embeddable C/C++ interpreter

7 étephen S. Nestinger and Harry H.WCheng

Figure 4 Plots of position vs time and velocity vs time

60,000
40,000

20,000

Position (pulses)
o

-20,000

-40,000

-60,000

Position vs. Time

Assembly Automation
Volume 24 - Number 2 - 2004 - 152-158

0 2,000 4,000

6,000 8,000 10,000 12,000

Time (ms)

8 gnuplot graph

60,000

40,000

20,000 [

-20,000

Velocity (pulses per sencond)
o

-40,000

Velocity vs. Time

IS

-60,000

0 2,000 4,000

6,000 8,000 10,000

Time (ms)

12,000

References

Cheng, H.H. (1993), “Scientific computing in the Ch
programming language”, Scientific Programming,
Vol. 2 No. 3, pp. 49-75.

Cheng, H.H. (1997), “Toward task-level robot
programming”, Proc. 2nd Chinese World Congress on
Intelligent Control and Intelligent Automation, 23-27
June 1997, Vol. 1, pp. 648-53.

Cheng, H.H. (2001), “Real-time computing in open systems
for manufacturing”, ASME Journal of Computing and
Information Science in Engineering, Vol. 1, pp. 1-8,
2001 March.

National Instruments (1999), FlexMotion Software Reference
Manual, National Instruments Corp., Part Number
321943B-01, Firmware Version 6.9.3, August 1999
Edition.

Softintegration, Inc. (2004a), The Ch Language Environment
User’s Guide, available at: www.softintegration.com

Softintegration, Inc. (2004b), The Ch Language Environment
SDK User's Guide,.

Wright, P.K. and Greenfeld, I. (1990), "Open architecture
manufacturing: the impact of open-system computer
on self-sustaining machinery and the machine tool
industry”, Proc. ASME Manufacturing International,
March 1990, Vol. 2, pp. 41-7.

158

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

