
Tutorial

raspberrypi.org/magpi 54 February 2018

WALKTHROUGH

CONTROLLING LEGO
MINDSTORMS

Construct a circuit to directly control a LEGO
robot with the Raspberry Pi GPIO

EGO Mindstorms is a great tool to gain
experience in understanding robotics, but
what if you wanted to make your own input

sensor? In this guide, we will show how simple it is
to construct a circuit to control a Mindstorms robot
through GPIO in Raspberry Pi.

We will show every step from connecting the robot
to writing the code. The result will be a program in
Ch, a superset interpreter of C/C++, to control the
direction of the robot with a push-button.

Software
To make use of C-STEM’s programming tools, you
should install the C-STEMbian operating system,
which contains C-STEM Studio. This free, open-source
operating system contains all the necessary tools for
robotics and physical computing. Additionally, it is a
superset of Raspbian, so all the familiar features will

still be there. If you already have Raspbian installed,
the C-STEM modules can be installed separately on
top. All of this is available from the C-STEMbian
section of the C-STEM website (magpi.cc/2p3JUNP).
Step-by-step guides will assist you in setting up and
accessing the Raspberry Pi if needed.

Connecting to the Mindstorms robot
Connecting to your Mindstorms robot is quite simple
with the C-STEM software.

First, you will need to open C-STEM Studio and
launch Ch Mindstorms Controller. Find the big ‘C’ at
the top of the screen after logging in to your Raspberry
Pi. Click the ‘C’, then navigate to ‘Ch Mindstorms
Controller’ on the left side of the menu in C-STEM
Studio. Click on Launch to open it.

Ch Mindstorms Controller can connect with both
EV3 and NXT robots. Simply press the Scan Robot

L

> LEGO
Mindstorms robot
(NXT or EV3)

> Breadboard

> Wires for
breadboard

> 1 × LED

> 1 × Push-button

> 1 × 220 Ω resistor
(Red-Red-Brown)

> 1 × 10 kΩ resistor
(Brown-Black-
Orange)

You’ll
 Need

KYLE GOFF, KYLIE COOPER,
BINSEN QIAN, HARRY H. CHENG
Kyle Goff, undergraduate computer engineering student;
Kylie Cooper, undergraduate mechanical engineering student;
Binsen Qian, PhD candidate in mechanical engineering; Harry H.
Cheng, professor and director of the UC Davis C-STEM Center.
cstem.ucdavis.edu

THROUGH GPIO

GPIO 4 is used
for the LED
output, which
will indicate the
current direction
of the robot

GPIO 18 is used for
the push-button
input, which
will change the
direction of motion
for the robot

A breakout
board is used in
this diagram to
simplify the wiring
process; you can
also wire directly
from the Pi

http://www.raspberrypi.org/magpi
http://magpi.cc/2p3JUNP
http://cstem.ucdavis.edu

Tutorial

raspberrypi.org/magpi 55February 2018

button and add the robots that are found to the list
on your robot manager. Follow the instructions on
screen to pair the robots with your Raspberry Pi. Due
to the limitations of Bluetooth, the Ch Mindstorms
Controller can connect to a maximum of seven robots
at a time. (Do make sure that the robots are turned on
and have Bluetooth enabled!)

Once the robots have been scanned and added to the
list, select the ones you would like to connect to and
press Connect. Robots that you are connected to will
have a green dot next to their names.

Building the simple circuit
The program in this tutorial requires a physical
circuit to function. Our circuit will consist of a
push-button input to control the direction of the
robot’s movement. An LED output will give a visual
indication of the direction change when pressing
the button.

Looking at the circuit, there are two sides: input
and output. The input side, shown on the right, has
a push button in series with a 10 kΩ resistor. The
push-button is connected to 5 V for power. GPIO 18 is
connected between them to read the button input.

The output side, on the left, has an LED in series
with a 220 Ω resistor. GPIO 4 controls this light.

If you have one, use a breakout board to make
the wiring process clearer. Otherwise, wire the pins
directly from the Pi. Take a wire from GPIO 4 and
connect it to an empty row of the breadboard. Then,
attach the positive (longer) leg of an LED to this row.
From the negative leg of the LED, attach a 220 Ω
(Red-Red-Brown) resistor to ground.

For the push-button, insert it over the breadboard
gutter. Wire 5 V to one lead, and wire a 10 kΩ (Brown-
Black-Orange) resistor from ground to the adjacent
leg. Finally, connect a wire from GPIO 18 to the row of
the resistor and push-button leg. This will carry the
input signal when the button is pressed.

Before programming, we can use GPIOviewer, a
helpful feature of the C-STEMbian operating system.
To use it, navigate again to the big ‘C’ at the top of the
desktop window.

Once open, navigate to Ch Raspberry Pi and click
Launch in the bottom right-hand corner. This will
open up GPIOviewer, which allows total control of all
the GPIO pins on the Raspberry Pi. In this view, you
can change pin modes between input, output, and
PWM (with a slider).

For this circuit, find GPIO 4 and set it to output.
Ensure the LED is set up and working properly by

switching between high and low outputs. If the light

turns on, you can move on to testing the input.
Set GPIO 18 to input mode. Then, try pressing the
button. If the input changes, the circuit is now ready
for programming.

Coding in Ch
Programming in Ch starts by opening C-STEM
Studio again on your Raspberry Pi. In v4.0,
Navigate to Code in Curriculum > LearnPiprogram >
mindstormsDirectionBot.ch. If you would like to make
changes to the file, be sure to copy and paste it to
another location before opening! To open the program
with ChIDE, simply double-click it. The code for the
project follows, which can be modified within the
editing pane.

When running the code, be sure that the
Mindstorms robot is still connected through
CMC! Otherwise, the IDE will not recognise that

the bot is connected and therefore will not run the
code on it. The code should drive the robot forward
or backward continuously at a constant speed. When
the user gives input via a button press, the robot
should switch directions by negating its speed. The
LED will also change states on a button press by
checking if the speed is positive or negative. Let’s
take a closer look at the Ch code to understand how
this is done…

The first thing to notice are the two headers,
wiringPi.h and mindstorms.h. We use the wiringPi
header to take inputs and outputs more easily from

CONTROLLING LEGO MINDSTORMS THROUGH GPIO

Language

>CH

DOWNLOAD:
magpi.cc/2mHpaF4

TROUBLESHOOTING WITH GPIOVIEWER
Remember to use GPIOviewer to test your circuit before
programming. You can test both the LED and the push
button with the GUI.

Open mindstormsDirectionBot.ch from the ‘Code in Curriculum’ section of C-STEM Studio

When running the code, be sure
that the Mindstorms robot is still
connected through CMC!

http://www.raspberrypi.org/magpi
http://magpi.cc/2mHpaF4

Tutorial

raspberrypi.org/magpi 56 February 2018

WALKTHROUGH

‘NB’ stands for ‘non-blocking’, which allows the
code to continue after the function has been called.
Without the ‘NB,’ the code would stop at the function
because it ‘blocks’ the program from continuing until
it finishes.

while(1){
switchVal = digitalRead(directionPin);
delay(50);

if (switchVal == HIGH) {
speed = -speed;
robot.setSpeed(speed,radius);
robot.driveForeverNB();
}

The first section inside the infinite while loop
checks the direction-changing pin. There is
a delay(50), meaning wait 50 milliseconds,
to ensure a clean reading of the pin. Without
this, it may switch directions multiple times
on a single press. If the pin reads a value of
‘HIGH’ or ‘1’, it will reverse the direction of
movement. To accomplish this, the speed is set
equal to its negative counterpart. For example,
if the speed was 5 inches/second, this will
change it to -5 inches/second. Therefore, the
Mindstorms robot will move just as fast in either
direction. Writing a new speed to the robot
also requires the setSpeed() function in the
CMindstormsI class. Notice that this function also
requires the radius of the wheel because it uses this
value to calculate how fast the wheel must spin
to achieve the correct distance. Finally, one more
robot.driveForeverNB() call is made to ensure the
robot continues to move.

if (speed >= 0) {
digitalWrite(ledPin, HIGH);
}
else {
digitalWrite(ledPin, LOW);
}
}

To end the while loop, an if statement controls the
state of the LED. When the robot’s speed is greater
than zero, it must be moving forward. In this case,
the LED turns on. The LED turns off while the robot
is moving backwards by checking if speed is less
than zero.

If you want to take this project a step further, try
connecting multiple robots and control them with
the same circuit! Additionally, you can add LED
traffic lights and make the robot move according
to the lights. Or, come up with your own idea! Now
you have the tools to make circuits that can interact
with robots.

FOR HELP
AND NEW
IDEAS
Explore the
free ‘Learn
Physical
Computing
with Raspberry
Pi’ and
‘Learning Robot
Programming
with LEGO
Mindstorms for
the Absolute
Beginner’
textbooks in
C-STEM Studio.

the GPIO pins. It allows the code to resemble Arduino
code. To use the Mindstorms platform, we include
mindstorms.h which contains all robot functionality
like moving and turning.

CMindstorms robot;
Now, the program needs to declare a robot. In Ch,
CMindstorms is a class that can be instantiated like a
variable. For this program, the Mindstorms robot is
referred to as ‘robot’; all functions related to it will be
called using the robot.function format.

double radius = 1.1;
double speed = 5.0;

The first variable holds the radius of the wheels on
the Mindstorms robot in units of inches. Remember
that the radius of a circle, or wheel, is the distance
from its centre to the edge. After that, a variable
for speed is set to 5 inches (12.5 cm) per second.
Depending on the Mindstorms wheels attached, the
radius may be different. By storing the value in a
variable and passing it to functions, the code is easily
adaptable to various sizes. If unsure, the radius of the
physical wheel can be measured, especially if using a
custom wheel.

int switchVal;
int directionPin = 18;
int ledPin = 4;
wiringPiSetupGpio();
pinMode(directionPin, INPUT);
pinMode(ledPin, OUTPUT);

Variables for the current switch value as well as the
input/output pins are declared similarly to previous
projects. Then, the pins are set up and initialised.

robot.driveForeverNB();
Before entering the while loop, the robot
is set to continuously move using the
driveForeverNB() function in the CMindstormsI
class. It will drive forever in whatever direction
it is currently facing. Forcing the robot to move
constantly makes this code and physical circuit easier
since the only input needed is the direction change.
It is important not to use the driveForever()
version without the ‘NB’ letters. For these functions,

Check that the LED is working correctly by switching between
high and low outputs on GPIOviewer

Check that the push-button is working correctly by making sure
the input value changes after the button is pushed

http://www.raspberrypi.org/magpi

	001_MagPi#66_Cover
	003_MPi#66_Welcome_PK_JR_LH2_MK2_RZ_LH
	005_MagPi#66
	006-013_MagPi#66_NEWS_JR_PK_LH_PK2_MK3_RZ_LH
	016-027_MagPi#66_COVER-FEATURE_PK_JR_MK2_RZ_LH
	029_MagPi#66
	030-031_MagPi#66_PacMan_SHOWCASE_MK_JR_PK_RZ_LH
	032_MagPi#66
	034-035_MagPi#66_Fuzzy-Duck_SHOWCASE_MK_PK_JR_LH
	036-037_MagPi#66_Steampunk_SHOWCASE_MK_JR_LH_PK_RZ
	038-040_MagPi#66_Wolfram-101_MK_PK_JR_LH
	041_MagPi#66
	042-047_Magpi#66_PiBakery_MK_PK_JR_LH
	048_MagPi#66
	053_MPi#66_HS-House-ad_MK_JR_PK_RZ_LH
	54-56_MagPi#66_Mindstorms_WALKTHROUGH_JR_PK_MK2_PK2_RZ_LH
	057_MagPi#66
	061_MagPi#66
	062-063_MagPi#66_FAQ_MK_PK_JR_LH
	070_MagPi#66
	072-073_MagPi#66_Project-book-ad_MK_JR_PK_RZ_LH
	074-075_MPi#66_Ohbot_REVIEW_MK_JR_PK_RZ_LH
	076_MPi#66_DAC-Pro_REVIEW_MK_PK_JR_LH
	078_MagPi#66_pHAT-Stack_REVIEW_MK_JR_PK_RZ_LH
	079_MagPi#66_ZeroView_REVIEW_PK_JR_MK2_PK2_RZ_LH
	080_MagPi#66
	084-085_MagPi#66_Community-Interview_MK_JR_PK_RZ_LH
	086-089_MPi#66_This-Month-in-Pi_MK_PK_JR_RZ_LH
	090-091_Magpi#66_Community-Profile_MK_JR_PK_RZ_LH
	092-093_MagPi66-EVENTS_JR_PK_RZ_LH
	094-095_MagPi#66_LETTERS_MK_JR_PK_RZ_LH
	097_MPi#65_Comp_MK_PK_JR_LH
	098_MagPi#66_Final-word_MK_PK_JR_LH

